孤子解理论中的二元论

Pub Date : 2024-09-01 DOI:10.1134/s0965542524700581
L. A. Beklaryan, A. L. Beklaryan
{"title":"孤子解理论中的二元论","authors":"L. A. Beklaryan, A. L. Beklaryan","doi":"10.1134/s0965542524700581","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The dualism of the theories of soliton solutions and solutions to functional differential equations of pointwise type is discussed. We describe the foundations underlying the formalism of this dualism, the central element of which is the concept of a soliton bouquet, as well as a dual pair “function–operator.” Within the framework of this approach, it is possible to describe the entire space of soliton solutions with a given characteristic and their asymptotics in both space and time. As an example, the model of traffic flow on the Manhattan lattice is used to describe the whole family of bounded soliton solutions.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dualism in the Theory of Soliton Solutions\",\"authors\":\"L. A. Beklaryan, A. L. Beklaryan\",\"doi\":\"10.1134/s0965542524700581\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>The dualism of the theories of soliton solutions and solutions to functional differential equations of pointwise type is discussed. We describe the foundations underlying the formalism of this dualism, the central element of which is the concept of a soliton bouquet, as well as a dual pair “function–operator.” Within the framework of this approach, it is possible to describe the entire space of soliton solutions with a given characteristic and their asymptotics in both space and time. As an example, the model of traffic flow on the Manhattan lattice is used to describe the whole family of bounded soliton solutions.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1134/s0965542524700581\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0965542524700581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要 讨论了孤子解理论与点式函数微分方程解理论的二元对立。我们描述了这种二元对立的形式基础,其核心要素是孤子束概念以及 "函数-操作符 "二元对立。在这种方法的框架内,可以描述具有给定特征的孤子解的整个空间及其在空间和时间上的渐近性。例如,曼哈顿晶格上的交通流模型就是用来描述整个有界孤子解的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Dualism in the Theory of Soliton Solutions

分享
查看原文
Dualism in the Theory of Soliton Solutions

Abstract

The dualism of the theories of soliton solutions and solutions to functional differential equations of pointwise type is discussed. We describe the foundations underlying the formalism of this dualism, the central element of which is the concept of a soliton bouquet, as well as a dual pair “function–operator.” Within the framework of this approach, it is possible to describe the entire space of soliton solutions with a given characteristic and their asymptotics in both space and time. As an example, the model of traffic flow on the Manhattan lattice is used to describe the whole family of bounded soliton solutions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信