复杂的纳兰四元数

Pub Date : 2024-09-01 DOI:10.1134/s0965542524700738
Çağla Çelemoğlu
{"title":"复杂的纳兰四元数","authors":"Çağla Çelemoğlu","doi":"10.1134/s0965542524700738","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Here, we first introduce complex Narayana numbers. Then, we describe a new quaternion sequence whose coefficients consist of complex Narayana numbers and that we named with complex Narayana quaternions. We also give the generating function, exponential generating function, Binet formula, and summation formulas for these sequences. Finally, we obtain a matrix representation of complex Narayana quaternions and make an application related to the matrix representation of complex Narayana quaternions.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Complex Narayana Quaternions\",\"authors\":\"Çağla Çelemoğlu\",\"doi\":\"10.1134/s0965542524700738\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>Here, we first introduce complex Narayana numbers. Then, we describe a new quaternion sequence whose coefficients consist of complex Narayana numbers and that we named with complex Narayana quaternions. We also give the generating function, exponential generating function, Binet formula, and summation formulas for these sequences. Finally, we obtain a matrix representation of complex Narayana quaternions and make an application related to the matrix representation of complex Narayana quaternions.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1134/s0965542524700738\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0965542524700738","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要在这里,我们首先介绍复数纳拉亚纳数。然后,我们描述了一个新的四元数列,其系数由复数纳拉扬那数组成,我们用复数纳拉扬那四元数将其命名。我们还给出了这些序列的生成函数、指数生成函数、比内公式和求和公式。最后,我们得到了复纳拉扬四元数的矩阵表示,并提出了与复纳拉扬四元数的矩阵表示有关的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Complex Narayana Quaternions

Abstract

Here, we first introduce complex Narayana numbers. Then, we describe a new quaternion sequence whose coefficients consist of complex Narayana numbers and that we named with complex Narayana quaternions. We also give the generating function, exponential generating function, Binet formula, and summation formulas for these sequences. Finally, we obtain a matrix representation of complex Narayana quaternions and make an application related to the matrix representation of complex Narayana quaternions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信