下一代多层元表面设计:针对 Beyond-RGB 可重构结构色彩的混合深度学习模型

Omar A. M. Abdelraouf, Ahmed Mousa, Mohamed Ragab
{"title":"下一代多层元表面设计:针对 Beyond-RGB 可重构结构色彩的混合深度学习模型","authors":"Omar A. M. Abdelraouf, Ahmed Mousa, Mohamed Ragab","doi":"arxiv-2409.07121","DOIUrl":null,"url":null,"abstract":"Metasurfaces are key to the development of flat optics and nanophotonic\ndevices, offering significant advantages in creating structural colors and\nhigh-quality factor cavities. Multi-layer metasurfaces (MLMs) further amplify\nthese benefits by enhancing light-matter interactions within individual\nnanopillars. However, the numerous design parameters involved make traditional\nsimulation tools impractical and time-consuming for optimizing MLMs. This\nhighlights the need for more efficient approaches to accelerate their design.\nIn this work, we introduce NanoPhotoNet, an AI-driven design tool based on a\nhybrid deep neural network (DNN) model that combines convolutional neural\nnetworks (CNN) and Long Short-Term Memory (LSTM) networks. NanoPhotoNet\nenhances the design and optimization of MLMs, achieving a prediction accuracy\nof over 98.3% and a speed improvement of 50,000x compared to conventional\nmethods. The tool enables MLMs to produce structural colors beyond the standard\nRGB region, expanding the RGB gamut area by 163%. Furthermore, we demonstrate\nthe generation of tunable structural colors, extending the metasurface\nfunctionality to tunable color filters. These findings present a powerful\nmethod for applying NanoPhotoNet to MLMs, enabling strong light-matter\ninteractions in applications such as tunable nanolasers and reconfigurable beam\nsteering.","PeriodicalId":501214,"journal":{"name":"arXiv - PHYS - Optics","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Next-Generation Multi-layer Metasurface Design: Hybrid Deep Learning Models for Beyond-RGB Reconfigurable Structural Colors\",\"authors\":\"Omar A. M. Abdelraouf, Ahmed Mousa, Mohamed Ragab\",\"doi\":\"arxiv-2409.07121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metasurfaces are key to the development of flat optics and nanophotonic\\ndevices, offering significant advantages in creating structural colors and\\nhigh-quality factor cavities. Multi-layer metasurfaces (MLMs) further amplify\\nthese benefits by enhancing light-matter interactions within individual\\nnanopillars. However, the numerous design parameters involved make traditional\\nsimulation tools impractical and time-consuming for optimizing MLMs. This\\nhighlights the need for more efficient approaches to accelerate their design.\\nIn this work, we introduce NanoPhotoNet, an AI-driven design tool based on a\\nhybrid deep neural network (DNN) model that combines convolutional neural\\nnetworks (CNN) and Long Short-Term Memory (LSTM) networks. NanoPhotoNet\\nenhances the design and optimization of MLMs, achieving a prediction accuracy\\nof over 98.3% and a speed improvement of 50,000x compared to conventional\\nmethods. The tool enables MLMs to produce structural colors beyond the standard\\nRGB region, expanding the RGB gamut area by 163%. Furthermore, we demonstrate\\nthe generation of tunable structural colors, extending the metasurface\\nfunctionality to tunable color filters. These findings present a powerful\\nmethod for applying NanoPhotoNet to MLMs, enabling strong light-matter\\ninteractions in applications such as tunable nanolasers and reconfigurable beam\\nsteering.\",\"PeriodicalId\":501214,\"journal\":{\"name\":\"arXiv - PHYS - Optics\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Optics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07121\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

元表面是平面光学和纳米光子器件发展的关键,在创造结构色彩和高质量因子空腔方面具有显著优势。多层元表面(MLM)通过增强单个纳米柱内的光物质相互作用,进一步扩大了这些优势。然而,由于涉及的设计参数众多,传统的模拟工具在优化 MLM 时既不实用又耗时。在这项工作中,我们介绍了基于混合深度神经网络(DNN)模型的人工智能驱动设计工具 NanoPhotoNet,该模型结合了卷积神经网络(CNN)和长短期记忆(LSTM)网络。NanoPhotoNet 增强了 MLM 的设计和优化,与传统方法相比,预测准确率超过 98.3%,速度提高了 50,000 倍。该工具使 MLM 能够生成超出标准 RGB 区域的结构色,将 RGB 色域范围扩大了 163%。此外,我们还演示了可调结构色的生成,将元表面功能扩展到了可调滤色器。这些发现为将 NanoPhotoNet 应用于 MLMs 提供了一个强大的方法,使可调谐纳米激光器和可重构光束转向等应用中的强光-物质相互作用成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Next-Generation Multi-layer Metasurface Design: Hybrid Deep Learning Models for Beyond-RGB Reconfigurable Structural Colors
Metasurfaces are key to the development of flat optics and nanophotonic devices, offering significant advantages in creating structural colors and high-quality factor cavities. Multi-layer metasurfaces (MLMs) further amplify these benefits by enhancing light-matter interactions within individual nanopillars. However, the numerous design parameters involved make traditional simulation tools impractical and time-consuming for optimizing MLMs. This highlights the need for more efficient approaches to accelerate their design. In this work, we introduce NanoPhotoNet, an AI-driven design tool based on a hybrid deep neural network (DNN) model that combines convolutional neural networks (CNN) and Long Short-Term Memory (LSTM) networks. NanoPhotoNet enhances the design and optimization of MLMs, achieving a prediction accuracy of over 98.3% and a speed improvement of 50,000x compared to conventional methods. The tool enables MLMs to produce structural colors beyond the standard RGB region, expanding the RGB gamut area by 163%. Furthermore, we demonstrate the generation of tunable structural colors, extending the metasurface functionality to tunable color filters. These findings present a powerful method for applying NanoPhotoNet to MLMs, enabling strong light-matter interactions in applications such as tunable nanolasers and reconfigurable beam steering.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信