一维光栅衍射问题的对数复杂严格傅里叶空间解法

Evgeniy Levdik, Alexey A. Shcherbakov
{"title":"一维光栅衍射问题的对数复杂严格傅里叶空间解法","authors":"Evgeniy Levdik, Alexey A. Shcherbakov","doi":"arxiv-2409.07821","DOIUrl":null,"url":null,"abstract":"The rigorous solution of the grating diffraction problem is a fundamental\nstep in many scientific fields and industrial applications ranging from the\nstudy of the fundamental properties of metasurfaces to the simulation of\nlithography masks. Fourier space methods, such as the Fourier Modal Method, are\nestablished tools for the analysis of the electromagnetic properties of\nperiodic structures, but are too computationally demanding to be directly\napplied to large and multiscale optical structures. This work focuses on\npushing the limits of rigorous computations of periodic electromagnetic\nstructures by adapting a powerful tensor compression technique called the\ntensor train decomposition. We have found that the millions and billions of\nnumbers produced by standard discretization schemes are inherently excessive\nfor storing the information about diffraction problems required for\ncomputations with a given accuracy, and we show that a logarithmically growing\namount of information is sufficient for reliable rigorous solution of the\nMaxwell's equations on an example of large period multiscale 1D grating\nstructures.","PeriodicalId":501214,"journal":{"name":"arXiv - PHYS - Optics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Logarithmically complex rigorous Fourier space solution to the 1D grating diffraction problem\",\"authors\":\"Evgeniy Levdik, Alexey A. Shcherbakov\",\"doi\":\"arxiv-2409.07821\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rigorous solution of the grating diffraction problem is a fundamental\\nstep in many scientific fields and industrial applications ranging from the\\nstudy of the fundamental properties of metasurfaces to the simulation of\\nlithography masks. Fourier space methods, such as the Fourier Modal Method, are\\nestablished tools for the analysis of the electromagnetic properties of\\nperiodic structures, but are too computationally demanding to be directly\\napplied to large and multiscale optical structures. This work focuses on\\npushing the limits of rigorous computations of periodic electromagnetic\\nstructures by adapting a powerful tensor compression technique called the\\ntensor train decomposition. We have found that the millions and billions of\\nnumbers produced by standard discretization schemes are inherently excessive\\nfor storing the information about diffraction problems required for\\ncomputations with a given accuracy, and we show that a logarithmically growing\\namount of information is sufficient for reliable rigorous solution of the\\nMaxwell's equations on an example of large period multiscale 1D grating\\nstructures.\",\"PeriodicalId\":501214,\"journal\":{\"name\":\"arXiv - PHYS - Optics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Optics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07821\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07821","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

光栅衍射问题的严格求解是许多科学领域和工业应用的基本步骤,从元表面基本特性的研究到光刻掩模的模拟,不一而足。傅立叶空间方法(如傅立叶模态法)是分析周期结构电磁特性的既定工具,但对计算要求太高,无法直接应用于大型和多尺度光学结构。这项工作的重点是通过采用一种名为张量列车分解的强大张量压缩技术,突破周期性电磁结构严格计算的极限。我们发现,标准离散化方案所产生的数百万或数十亿个数字,对于存储特定精度计算所需的衍射问题信息而言,本质上是过多的。我们证明,对于大周期多尺度一维光栅结构的麦克斯韦方程的可靠严格求解而言,对数增长的信息量是足够的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Logarithmically complex rigorous Fourier space solution to the 1D grating diffraction problem
The rigorous solution of the grating diffraction problem is a fundamental step in many scientific fields and industrial applications ranging from the study of the fundamental properties of metasurfaces to the simulation of lithography masks. Fourier space methods, such as the Fourier Modal Method, are established tools for the analysis of the electromagnetic properties of periodic structures, but are too computationally demanding to be directly applied to large and multiscale optical structures. This work focuses on pushing the limits of rigorous computations of periodic electromagnetic structures by adapting a powerful tensor compression technique called the tensor train decomposition. We have found that the millions and billions of numbers produced by standard discretization schemes are inherently excessive for storing the information about diffraction problems required for computations with a given accuracy, and we show that a logarithmically growing amount of information is sufficient for reliable rigorous solution of the Maxwell's equations on an example of large period multiscale 1D grating structures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信