大型语言模型能否开启科研新思路?

Sandeep Kumar, Tirthankar Ghosal, Vinayak Goyal, Asif Ekbal
{"title":"大型语言模型能否开启科研新思路?","authors":"Sandeep Kumar, Tirthankar Ghosal, Vinayak Goyal, Asif Ekbal","doi":"arxiv-2409.06185","DOIUrl":null,"url":null,"abstract":"\"An idea is nothing more nor less than a new combination of old elements\"\n(Young, J.W.). The widespread adoption of Large Language Models (LLMs) and\npublicly available ChatGPT have marked a significant turning point in the\nintegration of Artificial Intelligence (AI) into people's everyday lives. This\nstudy explores the capability of LLMs in generating novel research ideas based\non information from research papers. We conduct a thorough examination of 4\nLLMs in five domains (e.g., Chemistry, Computer, Economics, Medical, and\nPhysics). We found that the future research ideas generated by Claude-2 and\nGPT-4 are more aligned with the author's perspective than GPT-3.5 and Gemini.\nWe also found that Claude-2 generates more diverse future research ideas than\nGPT-4, GPT-3.5, and Gemini 1.0. We further performed a human evaluation of the\nnovelty, relevancy, and feasibility of the generated future research ideas.\nThis investigation offers insights into the evolving role of LLMs in idea\ngeneration, highlighting both its capability and limitations. Our work\ncontributes to the ongoing efforts in evaluating and utilizing language models\nfor generating future research ideas. We make our datasets and codes publicly\navailable.","PeriodicalId":501541,"journal":{"name":"arXiv - CS - Human-Computer Interaction","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Can Large Language Models Unlock Novel Scientific Research Ideas?\",\"authors\":\"Sandeep Kumar, Tirthankar Ghosal, Vinayak Goyal, Asif Ekbal\",\"doi\":\"arxiv-2409.06185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\\"An idea is nothing more nor less than a new combination of old elements\\\"\\n(Young, J.W.). The widespread adoption of Large Language Models (LLMs) and\\npublicly available ChatGPT have marked a significant turning point in the\\nintegration of Artificial Intelligence (AI) into people's everyday lives. This\\nstudy explores the capability of LLMs in generating novel research ideas based\\non information from research papers. We conduct a thorough examination of 4\\nLLMs in five domains (e.g., Chemistry, Computer, Economics, Medical, and\\nPhysics). We found that the future research ideas generated by Claude-2 and\\nGPT-4 are more aligned with the author's perspective than GPT-3.5 and Gemini.\\nWe also found that Claude-2 generates more diverse future research ideas than\\nGPT-4, GPT-3.5, and Gemini 1.0. We further performed a human evaluation of the\\nnovelty, relevancy, and feasibility of the generated future research ideas.\\nThis investigation offers insights into the evolving role of LLMs in idea\\ngeneration, highlighting both its capability and limitations. Our work\\ncontributes to the ongoing efforts in evaluating and utilizing language models\\nfor generating future research ideas. We make our datasets and codes publicly\\navailable.\",\"PeriodicalId\":501541,\"journal\":{\"name\":\"arXiv - CS - Human-Computer Interaction\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Human-Computer Interaction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.06185\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Human-Computer Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

"一个想法无非是旧元素的新组合"(Young, J.W.)。大型语言模型(LLMs)和公开可用的 ChatGPT 的广泛应用标志着人工智能(AI)融入人们日常生活的一个重要转折点。本研究基于研究论文中的信息,探讨了 LLM 在产生新颖研究想法方面的能力。我们对五个领域(如化学、计算机、经济学、医学和物理学)的 4 名 LLM 进行了深入研究。我们发现,与 GPT-3.5 和 Gemini 相比,Claude-2 和 GPT-4 产生的未来研究想法更符合作者的观点。我们还进一步对所生成的未来研究想法的新颖性、相关性和可行性进行了人工评估。这项调查深入了解了 LLM 在想法生成中不断演变的作用,突出了其能力和局限性。我们的工作为正在进行的评估和利用语言模型生成未来研究想法的工作做出了贡献。我们公开我们的数据集和代码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Can Large Language Models Unlock Novel Scientific Research Ideas?
"An idea is nothing more nor less than a new combination of old elements" (Young, J.W.). The widespread adoption of Large Language Models (LLMs) and publicly available ChatGPT have marked a significant turning point in the integration of Artificial Intelligence (AI) into people's everyday lives. This study explores the capability of LLMs in generating novel research ideas based on information from research papers. We conduct a thorough examination of 4 LLMs in five domains (e.g., Chemistry, Computer, Economics, Medical, and Physics). We found that the future research ideas generated by Claude-2 and GPT-4 are more aligned with the author's perspective than GPT-3.5 and Gemini. We also found that Claude-2 generates more diverse future research ideas than GPT-4, GPT-3.5, and Gemini 1.0. We further performed a human evaluation of the novelty, relevancy, and feasibility of the generated future research ideas. This investigation offers insights into the evolving role of LLMs in idea generation, highlighting both its capability and limitations. Our work contributes to the ongoing efforts in evaluating and utilizing language models for generating future research ideas. We make our datasets and codes publicly available.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信