{"title":"一类垂直张量互补问题的投影定点法","authors":"Shi-Liang Wu, Mei Long, Cui-Xia Li","doi":"10.1007/s11590-024-02146-5","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we consider the numerical solution of a class of vertical tensor complementarity problems. By reformulating the involved vertical tensor complementarity problem (VTCP) as an equivalent projected fixed point equation, together with the relevant properties of the power Lipschitz tensor, we propose a projected fixed point method for the involved VTCP, and discuss its convergence properties. Numerical experiments are given to illustrate the effectiveness of the proposed method.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A projected fixed point method for a class of vertical tensor complementarity problems\",\"authors\":\"Shi-Liang Wu, Mei Long, Cui-Xia Li\",\"doi\":\"10.1007/s11590-024-02146-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we consider the numerical solution of a class of vertical tensor complementarity problems. By reformulating the involved vertical tensor complementarity problem (VTCP) as an equivalent projected fixed point equation, together with the relevant properties of the power Lipschitz tensor, we propose a projected fixed point method for the involved VTCP, and discuss its convergence properties. Numerical experiments are given to illustrate the effectiveness of the proposed method.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11590-024-02146-5\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11590-024-02146-5","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A projected fixed point method for a class of vertical tensor complementarity problems
In this paper, we consider the numerical solution of a class of vertical tensor complementarity problems. By reformulating the involved vertical tensor complementarity problem (VTCP) as an equivalent projected fixed point equation, together with the relevant properties of the power Lipschitz tensor, we propose a projected fixed point method for the involved VTCP, and discuss its convergence properties. Numerical experiments are given to illustrate the effectiveness of the proposed method.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.