奇异非均质 (m, p)- 拉普拉斯方程的尖锐正则估计值

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Pêdra D. S. Andrade, João Vitor da Silva, Giane C. Rampasso, Makson S. Santos
{"title":"奇异非均质 (m, p)- 拉普拉斯方程的尖锐正则估计值","authors":"Pêdra D. S. Andrade, João Vitor da Silva, Giane C. Rampasso, Makson S. Santos","doi":"10.1007/s11118-024-10164-2","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we investigate a class of doubly nonlinear evolutions PDEs. We establish sharp regularity for the solutions in Hölder spaces. The proof is based on the geometric tangential method and intrinsic scaling technique. Our findings extend and recover the results in the context of the classical evolution PDEs with singular signature via a unified treatment in the slow, normal and fast diffusion regimes. In addition, we provide some applications to certain nonlinear evolution models, which may have their own mathematical interest.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sharp Regularity Estimates for a Singular Inhomogeneous (m, p)-Laplacian Equation\",\"authors\":\"Pêdra D. S. Andrade, João Vitor da Silva, Giane C. Rampasso, Makson S. Santos\",\"doi\":\"10.1007/s11118-024-10164-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we investigate a class of doubly nonlinear evolutions PDEs. We establish sharp regularity for the solutions in Hölder spaces. The proof is based on the geometric tangential method and intrinsic scaling technique. Our findings extend and recover the results in the context of the classical evolution PDEs with singular signature via a unified treatment in the slow, normal and fast diffusion regimes. In addition, we provide some applications to certain nonlinear evolution models, which may have their own mathematical interest.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11118-024-10164-2\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11118-024-10164-2","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了一类双非线性演化 PDE。我们为荷尔德空间中的解建立了尖锐的正则性。证明基于几何切向法和本征缩放技术。我们的研究结果通过在慢速、正常和快速扩散状态下的统一处理,扩展并恢复了具有奇异特征的经典演化 PDEs 的结果。此外,我们还提供了某些非线性演化模型的应用,这些模型可能有其自身的数学意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sharp Regularity Estimates for a Singular Inhomogeneous (m, p)-Laplacian Equation

In this paper, we investigate a class of doubly nonlinear evolutions PDEs. We establish sharp regularity for the solutions in Hölder spaces. The proof is based on the geometric tangential method and intrinsic scaling technique. Our findings extend and recover the results in the context of the classical evolution PDEs with singular signature via a unified treatment in the slow, normal and fast diffusion regimes. In addition, we provide some applications to certain nonlinear evolution models, which may have their own mathematical interest.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信