混合整数线性规划的机器学习增强分支与约束

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Lara Scavuzzo, Karen Aardal, Andrea Lodi, Neil Yorke-Smith
{"title":"混合整数线性规划的机器学习增强分支与约束","authors":"Lara Scavuzzo, Karen Aardal, Andrea Lodi, Neil Yorke-Smith","doi":"10.1007/s10107-024-02130-y","DOIUrl":null,"url":null,"abstract":"<p>Mixed Integer Linear Programming (MILP) is a pillar of mathematical optimization that offers a powerful modeling language for a wide range of applications. The main engine for solving MILPs is the branch-and-bound algorithm. Adding to the enormous algorithmic progress in MILP solving of the past decades, in more recent years there has been an explosive development in the use of machine learning for enhancing all main tasks involved in the branch-and-bound algorithm. These include primal heuristics, branching, cutting planes, node selection and solver configuration decisions. This article presents a survey of such approaches, addressing the vision of integration of machine learning and mathematical optimization as complementary technologies, and how this integration can benefit MILP solving. In particular, we give detailed attention to machine learning algorithms that automatically optimize some metric of branch-and-bound efficiency. We also address appropriate MILP representations, benchmarks and software tools used in the context of applying learning algorithms.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning augmented branch and bound for mixed integer linear programming\",\"authors\":\"Lara Scavuzzo, Karen Aardal, Andrea Lodi, Neil Yorke-Smith\",\"doi\":\"10.1007/s10107-024-02130-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Mixed Integer Linear Programming (MILP) is a pillar of mathematical optimization that offers a powerful modeling language for a wide range of applications. The main engine for solving MILPs is the branch-and-bound algorithm. Adding to the enormous algorithmic progress in MILP solving of the past decades, in more recent years there has been an explosive development in the use of machine learning for enhancing all main tasks involved in the branch-and-bound algorithm. These include primal heuristics, branching, cutting planes, node selection and solver configuration decisions. This article presents a survey of such approaches, addressing the vision of integration of machine learning and mathematical optimization as complementary technologies, and how this integration can benefit MILP solving. In particular, we give detailed attention to machine learning algorithms that automatically optimize some metric of branch-and-bound efficiency. We also address appropriate MILP representations, benchmarks and software tools used in the context of applying learning algorithms.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10107-024-02130-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10107-024-02130-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

混合整数线性规划(MILP)是数学优化的支柱,为广泛的应用提供了强大的建模语言。求解 MILP 的主要引擎是分支与边界算法。在过去几十年 MILP 求解算法取得巨大进步的基础上,近年来,机器学习在增强分支与边界算法所涉及的所有主要任务方面取得了爆炸性的发展。这些任务包括原始启发式、分支、切割平面、节点选择和求解器配置决策。本文概述了这些方法,探讨了机器学习与数学优化作为互补技术进行整合的前景,以及这种整合如何有利于 MILP 求解。特别是,我们详细介绍了自动优化分支边界效率指标的机器学习算法。我们还讨论了在应用学习算法时使用的适当 MILP 表示法、基准和软件工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Machine learning augmented branch and bound for mixed integer linear programming

Machine learning augmented branch and bound for mixed integer linear programming

Mixed Integer Linear Programming (MILP) is a pillar of mathematical optimization that offers a powerful modeling language for a wide range of applications. The main engine for solving MILPs is the branch-and-bound algorithm. Adding to the enormous algorithmic progress in MILP solving of the past decades, in more recent years there has been an explosive development in the use of machine learning for enhancing all main tasks involved in the branch-and-bound algorithm. These include primal heuristics, branching, cutting planes, node selection and solver configuration decisions. This article presents a survey of such approaches, addressing the vision of integration of machine learning and mathematical optimization as complementary technologies, and how this integration can benefit MILP solving. In particular, we give detailed attention to machine learning algorithms that automatically optimize some metric of branch-and-bound efficiency. We also address appropriate MILP representations, benchmarks and software tools used in the context of applying learning algorithms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信