APMG:由原子化学性质驱动的三维分子生成

IF 3.6 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS
Yang Hua;Zhenhua Feng;Xiaoning Song;Hui Li;Tianyang Xu;Xiao-Jun Wu;Dong-Jun Yu
{"title":"APMG:由原子化学性质驱动的三维分子生成","authors":"Yang Hua;Zhenhua Feng;Xiaoning Song;Hui Li;Tianyang Xu;Xiao-Jun Wu;Dong-Jun Yu","doi":"10.1109/TCBB.2024.3457807","DOIUrl":null,"url":null,"abstract":"Recently, mask-fill-based 3D Molecular Generation (MG) methods have become very popular in virtual drug design. However, the existing MG methods ignore the chemical properties of atoms and contain inappropriate atomic position training data, which limits their generation capability. To mitigate the above issues, this paper presents a novel mask-fill-based 3D molecule generation model driven by atomic chemical properties (APMG). Specifically, we construct a new attention-MPNN-based encoder and introduce the electronic information into atom representations to enrich chemical properties. Also, a multi-functional classifier is designed to predict the electronic information of each generated atom, guiding the type prediction of elements and bonds. By design, the proposed method uses the chemical properties of atoms and their correlations for high-quality molecule generation. Second, to optimize the atomic position training data, we propose a novel atomic training position generation approach using the Chi-Square distribution. We evaluate our APMG method on the CrossDocked dataset and visualize the docking states of the pockets and generated molecules. The obtained results demonstrate the superiority and merits of APMG over the state-of-the-art approaches.","PeriodicalId":13344,"journal":{"name":"IEEE/ACM Transactions on Computational Biology and Bioinformatics","volume":"21 6","pages":"2269-2279"},"PeriodicalIF":3.6000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"APMG: 3D Molecule Generation Driven by Atomic Chemical Properties\",\"authors\":\"Yang Hua;Zhenhua Feng;Xiaoning Song;Hui Li;Tianyang Xu;Xiao-Jun Wu;Dong-Jun Yu\",\"doi\":\"10.1109/TCBB.2024.3457807\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, mask-fill-based 3D Molecular Generation (MG) methods have become very popular in virtual drug design. However, the existing MG methods ignore the chemical properties of atoms and contain inappropriate atomic position training data, which limits their generation capability. To mitigate the above issues, this paper presents a novel mask-fill-based 3D molecule generation model driven by atomic chemical properties (APMG). Specifically, we construct a new attention-MPNN-based encoder and introduce the electronic information into atom representations to enrich chemical properties. Also, a multi-functional classifier is designed to predict the electronic information of each generated atom, guiding the type prediction of elements and bonds. By design, the proposed method uses the chemical properties of atoms and their correlations for high-quality molecule generation. Second, to optimize the atomic position training data, we propose a novel atomic training position generation approach using the Chi-Square distribution. We evaluate our APMG method on the CrossDocked dataset and visualize the docking states of the pockets and generated molecules. The obtained results demonstrate the superiority and merits of APMG over the state-of-the-art approaches.\",\"PeriodicalId\":13344,\"journal\":{\"name\":\"IEEE/ACM Transactions on Computational Biology and Bioinformatics\",\"volume\":\"21 6\",\"pages\":\"2269-2279\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE/ACM Transactions on Computational Biology and Bioinformatics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10675370/\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/ACM Transactions on Computational Biology and Bioinformatics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10675370/","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
APMG: 3D Molecule Generation Driven by Atomic Chemical Properties
Recently, mask-fill-based 3D Molecular Generation (MG) methods have become very popular in virtual drug design. However, the existing MG methods ignore the chemical properties of atoms and contain inappropriate atomic position training data, which limits their generation capability. To mitigate the above issues, this paper presents a novel mask-fill-based 3D molecule generation model driven by atomic chemical properties (APMG). Specifically, we construct a new attention-MPNN-based encoder and introduce the electronic information into atom representations to enrich chemical properties. Also, a multi-functional classifier is designed to predict the electronic information of each generated atom, guiding the type prediction of elements and bonds. By design, the proposed method uses the chemical properties of atoms and their correlations for high-quality molecule generation. Second, to optimize the atomic position training data, we propose a novel atomic training position generation approach using the Chi-Square distribution. We evaluate our APMG method on the CrossDocked dataset and visualize the docking states of the pockets and generated molecules. The obtained results demonstrate the superiority and merits of APMG over the state-of-the-art approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.50
自引率
6.70%
发文量
479
审稿时长
3 months
期刊介绍: IEEE/ACM Transactions on Computational Biology and Bioinformatics emphasizes the algorithmic, mathematical, statistical and computational methods that are central in bioinformatics and computational biology; the development and testing of effective computer programs in bioinformatics; the development of biological databases; and important biological results that are obtained from the use of these methods, programs and databases; the emerging field of Systems Biology, where many forms of data are used to create a computer-based model of a complex biological system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信