李雅普诺夫条件下非 Lipschitz 系数的 Kolmogorov 方程的正则性保持

IF 1.5 1区 数学 Q2 STATISTICS & PROBABILITY
Martin Chak
{"title":"李雅普诺夫条件下非 Lipschitz 系数的 Kolmogorov 方程的正则性保持","authors":"Martin Chak","doi":"10.1007/s00440-024-01313-0","DOIUrl":null,"url":null,"abstract":"<p>Given global Lipschitz continuity and differentiability of high enough order on the coefficients in Itô’s equation, differentiability of associated semigroups, existence of twice differentiable solutions to Kolmogorov equations and weak convergence rates of order one for numerical approximations are known. In this work and against the counterexamples of Hairer et al. (Ann Probab 43(2):468–527, https://doi.org/10.1214/13-AOP838, 2015), the drift and diffusion coefficients having Lipschitz constants that are <span>\\(o(\\log V)\\)</span> and <span>\\(o(\\sqrt{\\log V})\\)</span> respectively for a function <i>V</i> satisfying <span>\\((\\partial _t + L)V\\le CV\\)</span> is shown to be a generalizing condition in place of global Lipschitz continuity for the above.</p>","PeriodicalId":20527,"journal":{"name":"Probability Theory and Related Fields","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regularity preservation in Kolmogorov equations for non-Lipschitz coefficients under Lyapunov conditions\",\"authors\":\"Martin Chak\",\"doi\":\"10.1007/s00440-024-01313-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Given global Lipschitz continuity and differentiability of high enough order on the coefficients in Itô’s equation, differentiability of associated semigroups, existence of twice differentiable solutions to Kolmogorov equations and weak convergence rates of order one for numerical approximations are known. In this work and against the counterexamples of Hairer et al. (Ann Probab 43(2):468–527, https://doi.org/10.1214/13-AOP838, 2015), the drift and diffusion coefficients having Lipschitz constants that are <span>\\\\(o(\\\\log V)\\\\)</span> and <span>\\\\(o(\\\\sqrt{\\\\log V})\\\\)</span> respectively for a function <i>V</i> satisfying <span>\\\\((\\\\partial _t + L)V\\\\le CV\\\\)</span> is shown to be a generalizing condition in place of global Lipschitz continuity for the above.</p>\",\"PeriodicalId\":20527,\"journal\":{\"name\":\"Probability Theory and Related Fields\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Probability Theory and Related Fields\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00440-024-01313-0\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probability Theory and Related Fields","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00440-024-01313-0","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

鉴于伊托方程中系数的全局利普齐兹连续性和足够高阶的可微性,已知相关半群的可微性、两次可微的科尔莫哥洛夫方程解的存在性以及数值逼近的一阶弱收敛率。在这项工作中,针对 Hairer 等人的反例(Ann Probab 43(2):468-527, https://doi.org/10.1214/13-AOP838, 2015),对于满足 \((\partial _t + L)V\le CV\) 的函数 V,漂移系数和扩散系数的 Lipschitz 常量分别为 \(o(\log V)\) 和 \(o(\sqrt{\log V})\),这被证明是代替上述全局 Lipschitz 连续性的概括条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Regularity preservation in Kolmogorov equations for non-Lipschitz coefficients under Lyapunov conditions

Given global Lipschitz continuity and differentiability of high enough order on the coefficients in Itô’s equation, differentiability of associated semigroups, existence of twice differentiable solutions to Kolmogorov equations and weak convergence rates of order one for numerical approximations are known. In this work and against the counterexamples of Hairer et al. (Ann Probab 43(2):468–527, https://doi.org/10.1214/13-AOP838, 2015), the drift and diffusion coefficients having Lipschitz constants that are \(o(\log V)\) and \(o(\sqrt{\log V})\) respectively for a function V satisfying \((\partial _t + L)V\le CV\) is shown to be a generalizing condition in place of global Lipschitz continuity for the above.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Probability Theory and Related Fields
Probability Theory and Related Fields 数学-统计学与概率论
CiteScore
3.70
自引率
5.00%
发文量
71
审稿时长
6-12 weeks
期刊介绍: Probability Theory and Related Fields publishes research papers in modern probability theory and its various fields of application. Thus, subjects of interest include: mathematical statistical physics, mathematical statistics, mathematical biology, theoretical computer science, and applications of probability theory to other areas of mathematics such as combinatorics, analysis, ergodic theory and geometry. Survey papers on emerging areas of importance may be considered for publication. The main languages of publication are English, French and German.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信