{"title":"通过多租户环境中的流量预测实现快速和隔离保证的共同流调度","authors":"Chenghao Li, Huyin Zhang, Fei Yang, Sheng Hao","doi":"10.1007/s11227-024-06457-3","DOIUrl":null,"url":null,"abstract":"<p>It is a challenging task to achieve the minimum average CCT (coflow completion time) and provide isolation guarantees in multi-tenant datacenters without prior knowledge of coflow sizes. State-of-the-art solutions either focus on minimizing the average CCT or providing optimal isolation guarantees. However, achieving the minimum average CCT and isolation guarantees in multi-tenant datacenters is difficult due to the conflicting nature of these objectives. Therefore, we propose FIGCS-TF (Fast and Isolation Guarantees Coflow Scheduling via Traffic Forecasting), a coflow scheduling algorithm that does not require prior knowledge. FIGCS-TF utilizes a lightweight forecasting module to predict the relative scheduling priority of coflows. Moreover, it employs the MDRF (monopolistic dominant resource fairness) strategy for bandwidth allocation, which is based on super-coflows and helps achieve long-term isolation. Through trace-driven simulations, FIGCS-TF demonstrate communication stages that are 1.12<span>\\(\\times\\)</span>, 1.99<span>\\(\\times\\)</span>, and 5.50<span>\\(\\times\\)</span> faster than DRF (Dominant Resource Fairness), NCDRF (Non-Clairvoyant Dominant Resource Fairness) and Per-Flow Fairness, respectively. In comparison with the theoretically minimum CCT, FIGCS-TF experiences only a 46% increase in average CCT at the top 95th percentile of the dataset. Overall, FIGCS-TF exhibits superior performance in reducing average CCT compared to other algorithms.</p>","PeriodicalId":501596,"journal":{"name":"The Journal of Supercomputing","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast and isolation guaranteed coflow scheduling via traffic forecasting in multi-tenant environment\",\"authors\":\"Chenghao Li, Huyin Zhang, Fei Yang, Sheng Hao\",\"doi\":\"10.1007/s11227-024-06457-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>It is a challenging task to achieve the minimum average CCT (coflow completion time) and provide isolation guarantees in multi-tenant datacenters without prior knowledge of coflow sizes. State-of-the-art solutions either focus on minimizing the average CCT or providing optimal isolation guarantees. However, achieving the minimum average CCT and isolation guarantees in multi-tenant datacenters is difficult due to the conflicting nature of these objectives. Therefore, we propose FIGCS-TF (Fast and Isolation Guarantees Coflow Scheduling via Traffic Forecasting), a coflow scheduling algorithm that does not require prior knowledge. FIGCS-TF utilizes a lightweight forecasting module to predict the relative scheduling priority of coflows. Moreover, it employs the MDRF (monopolistic dominant resource fairness) strategy for bandwidth allocation, which is based on super-coflows and helps achieve long-term isolation. Through trace-driven simulations, FIGCS-TF demonstrate communication stages that are 1.12<span>\\\\(\\\\times\\\\)</span>, 1.99<span>\\\\(\\\\times\\\\)</span>, and 5.50<span>\\\\(\\\\times\\\\)</span> faster than DRF (Dominant Resource Fairness), NCDRF (Non-Clairvoyant Dominant Resource Fairness) and Per-Flow Fairness, respectively. In comparison with the theoretically minimum CCT, FIGCS-TF experiences only a 46% increase in average CCT at the top 95th percentile of the dataset. Overall, FIGCS-TF exhibits superior performance in reducing average CCT compared to other algorithms.</p>\",\"PeriodicalId\":501596,\"journal\":{\"name\":\"The Journal of Supercomputing\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Supercomputing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11227-024-06457-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Supercomputing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11227-024-06457-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fast and isolation guaranteed coflow scheduling via traffic forecasting in multi-tenant environment
It is a challenging task to achieve the minimum average CCT (coflow completion time) and provide isolation guarantees in multi-tenant datacenters without prior knowledge of coflow sizes. State-of-the-art solutions either focus on minimizing the average CCT or providing optimal isolation guarantees. However, achieving the minimum average CCT and isolation guarantees in multi-tenant datacenters is difficult due to the conflicting nature of these objectives. Therefore, we propose FIGCS-TF (Fast and Isolation Guarantees Coflow Scheduling via Traffic Forecasting), a coflow scheduling algorithm that does not require prior knowledge. FIGCS-TF utilizes a lightweight forecasting module to predict the relative scheduling priority of coflows. Moreover, it employs the MDRF (monopolistic dominant resource fairness) strategy for bandwidth allocation, which is based on super-coflows and helps achieve long-term isolation. Through trace-driven simulations, FIGCS-TF demonstrate communication stages that are 1.12\(\times\), 1.99\(\times\), and 5.50\(\times\) faster than DRF (Dominant Resource Fairness), NCDRF (Non-Clairvoyant Dominant Resource Fairness) and Per-Flow Fairness, respectively. In comparison with the theoretically minimum CCT, FIGCS-TF experiences only a 46% increase in average CCT at the top 95th percentile of the dataset. Overall, FIGCS-TF exhibits superior performance in reducing average CCT compared to other algorithms.