{"title":"带漂移的相关分数布朗运动进入正交的概率:精确渐近学","authors":"Krzysztof Dȩbicki, Lanpeng Ji, Svyatoslav Novikov","doi":"10.1007/s10687-024-00489-x","DOIUrl":null,"url":null,"abstract":"<p>For <span>\\(\\{\\varvec{B}_{H}(t)= (B_{H,1}(t) ,\\ldots ,B_{H,d}(t))^{{\\top }},t\\ge 0\\}\\)</span>, where <span>\\(\\{B_{H,i}(t),t\\ge 0\\}, 1\\le i\\le d\\)</span> are mutually independent fractional Brownian motions, we obtain the exact asymptotics of </p><span>$$\\mathbb P (\\exists t\\ge 0: A \\varvec{B}_{H}(t) - \\varvec{\\mu }t >\\varvec{\\nu }u), \\ \\ \\ \\ u\\rightarrow \\infty ,$$</span><p>where <i>A</i> is a non-singular <span>\\(d\\times d\\)</span> matrix and <span>\\(\\varvec{\\mu }=(\\mu _1,\\ldots , \\mu _d)^{{\\top }}\\in \\mathbb {R}^d\\)</span>, <span>\\(\\varvec{\\nu }=(\\nu _1, \\ldots , \\nu _d)^{{\\top }} \\in \\mathbb {R}^d\\)</span> are such that there exists some <span>\\(1\\le i\\le d\\)</span> such that <span>\\(\\mu _i>0, \\nu _i>0.\\)</span></p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Probability of entering an orthant by correlated fractional Brownian motion with drift: exact asymptotics\",\"authors\":\"Krzysztof Dȩbicki, Lanpeng Ji, Svyatoslav Novikov\",\"doi\":\"10.1007/s10687-024-00489-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For <span>\\\\(\\\\{\\\\varvec{B}_{H}(t)= (B_{H,1}(t) ,\\\\ldots ,B_{H,d}(t))^{{\\\\top }},t\\\\ge 0\\\\}\\\\)</span>, where <span>\\\\(\\\\{B_{H,i}(t),t\\\\ge 0\\\\}, 1\\\\le i\\\\le d\\\\)</span> are mutually independent fractional Brownian motions, we obtain the exact asymptotics of </p><span>$$\\\\mathbb P (\\\\exists t\\\\ge 0: A \\\\varvec{B}_{H}(t) - \\\\varvec{\\\\mu }t >\\\\varvec{\\\\nu }u), \\\\ \\\\ \\\\ \\\\ u\\\\rightarrow \\\\infty ,$$</span><p>where <i>A</i> is a non-singular <span>\\\\(d\\\\times d\\\\)</span> matrix and <span>\\\\(\\\\varvec{\\\\mu }=(\\\\mu _1,\\\\ldots , \\\\mu _d)^{{\\\\top }}\\\\in \\\\mathbb {R}^d\\\\)</span>, <span>\\\\(\\\\varvec{\\\\nu }=(\\\\nu _1, \\\\ldots , \\\\nu _d)^{{\\\\top }} \\\\in \\\\mathbb {R}^d\\\\)</span> are such that there exists some <span>\\\\(1\\\\le i\\\\le d\\\\)</span> such that <span>\\\\(\\\\mu _i>0, \\\\nu _i>0.\\\\)</span></p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10687-024-00489-x\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10687-024-00489-x","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
对于 \{v\varvec{B}_{H}(t)= (B_{H,1}(t) ,\ldots ,B_{H,d}(t))^{{top }},t\ge 0\}\), 其中 \(\{B_{H,i}(t),t\ge 0\}、1le i\le d\) 都是相互独立的分数布朗运动,我们得到了 $$\mathbb P (\exists t\ge 0) 的精确渐近线:A \varvec{B}_{H}(t) - \varvec{\mu }t >;\$$where A is a non-singular \(d\times d\) matrix and \(\varvec{\mu }=(\mu _1、\在 \mathbb {R}^d\), ((\varvec{nu }=(\nu _1, \ldots , \nu _d)^{{\top}}), ((\varvec{nu }=(\nu _1, \ldots , \nu _d)^{{top }}\in \mathbb {R}^d\) are such that thereists some \(1\le i\le d\) such that \(\mu _i>0, \nu _i>0.\)
Probability of entering an orthant by correlated fractional Brownian motion with drift: exact asymptotics
For \(\{\varvec{B}_{H}(t)= (B_{H,1}(t) ,\ldots ,B_{H,d}(t))^{{\top }},t\ge 0\}\), where \(\{B_{H,i}(t),t\ge 0\}, 1\le i\le d\) are mutually independent fractional Brownian motions, we obtain the exact asymptotics of
$$\mathbb P (\exists t\ge 0: A \varvec{B}_{H}(t) - \varvec{\mu }t >\varvec{\nu }u), \ \ \ \ u\rightarrow \infty ,$$
where A is a non-singular \(d\times d\) matrix and \(\varvec{\mu }=(\mu _1,\ldots , \mu _d)^{{\top }}\in \mathbb {R}^d\), \(\varvec{\nu }=(\nu _1, \ldots , \nu _d)^{{\top }} \in \mathbb {R}^d\) are such that there exists some \(1\le i\le d\) such that \(\mu _i>0, \nu _i>0.\)
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.