带漂移的相关分数布朗运动进入正交的概率:精确渐近学

IF 1.1 3区 数学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Krzysztof Dȩbicki, Lanpeng Ji, Svyatoslav Novikov
{"title":"带漂移的相关分数布朗运动进入正交的概率:精确渐近学","authors":"Krzysztof Dȩbicki, Lanpeng Ji, Svyatoslav Novikov","doi":"10.1007/s10687-024-00489-x","DOIUrl":null,"url":null,"abstract":"<p>For <span>\\(\\{\\varvec{B}_{H}(t)= (B_{H,1}(t) ,\\ldots ,B_{H,d}(t))^{{\\top }},t\\ge 0\\}\\)</span>, where <span>\\(\\{B_{H,i}(t),t\\ge 0\\}, 1\\le i\\le d\\)</span> are mutually independent fractional Brownian motions, we obtain the exact asymptotics of </p><span>$$\\mathbb P (\\exists t\\ge 0: A \\varvec{B}_{H}(t) - \\varvec{\\mu }t &gt;\\varvec{\\nu }u), \\ \\ \\ \\ u\\rightarrow \\infty ,$$</span><p>where <i>A</i> is a non-singular <span>\\(d\\times d\\)</span> matrix and <span>\\(\\varvec{\\mu }=(\\mu _1,\\ldots , \\mu _d)^{{\\top }}\\in \\mathbb {R}^d\\)</span>, <span>\\(\\varvec{\\nu }=(\\nu _1, \\ldots , \\nu _d)^{{\\top }} \\in \\mathbb {R}^d\\)</span> are such that there exists some <span>\\(1\\le i\\le d\\)</span> such that <span>\\(\\mu _i&gt;0, \\nu _i&gt;0.\\)</span></p>","PeriodicalId":49274,"journal":{"name":"Extremes","volume":"1 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Probability of entering an orthant by correlated fractional Brownian motion with drift: exact asymptotics\",\"authors\":\"Krzysztof Dȩbicki, Lanpeng Ji, Svyatoslav Novikov\",\"doi\":\"10.1007/s10687-024-00489-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For <span>\\\\(\\\\{\\\\varvec{B}_{H}(t)= (B_{H,1}(t) ,\\\\ldots ,B_{H,d}(t))^{{\\\\top }},t\\\\ge 0\\\\}\\\\)</span>, where <span>\\\\(\\\\{B_{H,i}(t),t\\\\ge 0\\\\}, 1\\\\le i\\\\le d\\\\)</span> are mutually independent fractional Brownian motions, we obtain the exact asymptotics of </p><span>$$\\\\mathbb P (\\\\exists t\\\\ge 0: A \\\\varvec{B}_{H}(t) - \\\\varvec{\\\\mu }t &gt;\\\\varvec{\\\\nu }u), \\\\ \\\\ \\\\ \\\\ u\\\\rightarrow \\\\infty ,$$</span><p>where <i>A</i> is a non-singular <span>\\\\(d\\\\times d\\\\)</span> matrix and <span>\\\\(\\\\varvec{\\\\mu }=(\\\\mu _1,\\\\ldots , \\\\mu _d)^{{\\\\top }}\\\\in \\\\mathbb {R}^d\\\\)</span>, <span>\\\\(\\\\varvec{\\\\nu }=(\\\\nu _1, \\\\ldots , \\\\nu _d)^{{\\\\top }} \\\\in \\\\mathbb {R}^d\\\\)</span> are such that there exists some <span>\\\\(1\\\\le i\\\\le d\\\\)</span> such that <span>\\\\(\\\\mu _i&gt;0, \\\\nu _i&gt;0.\\\\)</span></p>\",\"PeriodicalId\":49274,\"journal\":{\"name\":\"Extremes\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Extremes\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10687-024-00489-x\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Extremes","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10687-024-00489-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

对于 \{v\varvec{B}_{H}(t)= (B_{H,1}(t) ,\ldots ,B_{H,d}(t))^{{top }},t\ge 0\}\), 其中 \(\{B_{H,i}(t),t\ge 0\}、1le i\le d\) 都是相互独立的分数布朗运动,我们得到了 $$\mathbb P (\exists t\ge 0) 的精确渐近线:A \varvec{B}_{H}(t) - \varvec{\mu }t >;\$$where A is a non-singular \(d\times d\) matrix and \(\varvec{\mu }=(\mu _1、\在 \mathbb {R}^d\), ((\varvec{nu }=(\nu _1, \ldots , \nu _d)^{{\top}}), ((\varvec{nu }=(\nu _1, \ldots , \nu _d)^{{top }}\in \mathbb {R}^d\) are such that thereists some \(1\le i\le d\) such that \(\mu _i>0, \nu _i>0.\)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Probability of entering an orthant by correlated fractional Brownian motion with drift: exact asymptotics

For \(\{\varvec{B}_{H}(t)= (B_{H,1}(t) ,\ldots ,B_{H,d}(t))^{{\top }},t\ge 0\}\), where \(\{B_{H,i}(t),t\ge 0\}, 1\le i\le d\) are mutually independent fractional Brownian motions, we obtain the exact asymptotics of

$$\mathbb P (\exists t\ge 0: A \varvec{B}_{H}(t) - \varvec{\mu }t >\varvec{\nu }u), \ \ \ \ u\rightarrow \infty ,$$

where A is a non-singular \(d\times d\) matrix and \(\varvec{\mu }=(\mu _1,\ldots , \mu _d)^{{\top }}\in \mathbb {R}^d\), \(\varvec{\nu }=(\nu _1, \ldots , \nu _d)^{{\top }} \in \mathbb {R}^d\) are such that there exists some \(1\le i\le d\) such that \(\mu _i>0, \nu _i>0.\)

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Extremes
Extremes MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-STATISTICS & PROBABILITY
CiteScore
2.20
自引率
7.70%
发文量
15
审稿时长
>12 weeks
期刊介绍: Extremes publishes original research on all aspects of statistical extreme value theory and its applications in science, engineering, economics and other fields. Authoritative and timely reviews of theoretical advances and of extreme value methods and problems in important applied areas, including detailed case studies, are welcome and will be a regular feature. All papers are refereed. Publication will be swift: in particular electronic submission and correspondence is encouraged. Statistical extreme value methods encompass a very wide range of problems: Extreme waves, rainfall, and floods are of basic importance in oceanography and hydrology, as are high windspeeds and extreme temperatures in meteorology and catastrophic claims in insurance. The waveforms and extremes of random loads determine lifelengths in structural safety, corrosion and metal fatigue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信