推断单变量和多变量极值的半参数方法

IF 1.1 3区 数学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Seungwoo Kang, Kyusoon Kim, Youngwook Kwon, Seeun Park, Seoncheol Park, Ha-Young Shin, Joonpyo Kim, Hee-Seok Oh
{"title":"推断单变量和多变量极值的半参数方法","authors":"Seungwoo Kang, Kyusoon Kim, Youngwook Kwon, Seeun Park, Seoncheol Park, Ha-Young Shin, Joonpyo Kim, Hee-Seok Oh","doi":"10.1007/s10687-024-00497-x","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we present several semiparametric approaches for the inference of univariate and multivariate extremes to resolve the tasks from the EVA (2023) Conference Data Challenge. We implement generalized additive models to capture the flexible relationship for point and interval estimations of the conditional quantiles. We also adopt <span>\\(L^{p}\\)</span>-quantile to estimate the marginal quantiles of extreme levels. To predict probabilities of multivariate extreme events, we implement conditional methods by Heffernan and Tawn (Royal J. Stat. Soc.: Ser. B (Statistical Methodology) <b>66</b>(3), 497–546, 2004) and Keef et al. (J. Multivar. Anal. <b>115</b>, 396–404, 2013). We further validate predicted models, evaluating their performance scores constructed based on the notion of an equally extreme level of quantiles and cross-validation to select the best estimates to achieve high accuracy. When estimating the excess probability of 50-dimensional data, we cluster variables with high correlation after simple data exploration and combine the results obtained from each cluster. Finally, we also provide post-mortem analysis based on the ground truth.</p>","PeriodicalId":49274,"journal":{"name":"Extremes","volume":"32 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semiparametric approaches for the inference of univariate and multivariate extremes\",\"authors\":\"Seungwoo Kang, Kyusoon Kim, Youngwook Kwon, Seeun Park, Seoncheol Park, Ha-Young Shin, Joonpyo Kim, Hee-Seok Oh\",\"doi\":\"10.1007/s10687-024-00497-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we present several semiparametric approaches for the inference of univariate and multivariate extremes to resolve the tasks from the EVA (2023) Conference Data Challenge. We implement generalized additive models to capture the flexible relationship for point and interval estimations of the conditional quantiles. We also adopt <span>\\\\(L^{p}\\\\)</span>-quantile to estimate the marginal quantiles of extreme levels. To predict probabilities of multivariate extreme events, we implement conditional methods by Heffernan and Tawn (Royal J. Stat. Soc.: Ser. B (Statistical Methodology) <b>66</b>(3), 497–546, 2004) and Keef et al. (J. Multivar. Anal. <b>115</b>, 396–404, 2013). We further validate predicted models, evaluating their performance scores constructed based on the notion of an equally extreme level of quantiles and cross-validation to select the best estimates to achieve high accuracy. When estimating the excess probability of 50-dimensional data, we cluster variables with high correlation after simple data exploration and combine the results obtained from each cluster. Finally, we also provide post-mortem analysis based on the ground truth.</p>\",\"PeriodicalId\":49274,\"journal\":{\"name\":\"Extremes\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Extremes\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10687-024-00497-x\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Extremes","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10687-024-00497-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们介绍了几种推断单变量和多变量极值的半参数方法,以解决 EVA(2023 年)会议数据挑战的任务。我们采用广义加法模型来捕捉条件量值的点估计和区间估计的灵活关系。我们还采用 \(L^{p}\)-quantile 来估计极端水平的边际量值。为了预测多元极端事件的概率,我们采用了 Heffernan 和 Tawn 的条件方法(Royal J. Stat.Soc.: Ser. B (Statistical Methodology) 66(3), 497-546, 2004)和 Keef 等人(J. Multivar.)我们进一步验证了预测模型,评估了基于等极端量级和交叉验证概念构建的性能分数,以选择最佳估计值来实现高准确度。在估算 50 维数据的超额概率时,我们在简单的数据探索后对相关性较高的变量进行聚类,并将每个聚类得到的结果进行合并。最后,我们还提供了基于基本事实的事后分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Semiparametric approaches for the inference of univariate and multivariate extremes

Semiparametric approaches for the inference of univariate and multivariate extremes

In this paper, we present several semiparametric approaches for the inference of univariate and multivariate extremes to resolve the tasks from the EVA (2023) Conference Data Challenge. We implement generalized additive models to capture the flexible relationship for point and interval estimations of the conditional quantiles. We also adopt \(L^{p}\)-quantile to estimate the marginal quantiles of extreme levels. To predict probabilities of multivariate extreme events, we implement conditional methods by Heffernan and Tawn (Royal J. Stat. Soc.: Ser. B (Statistical Methodology) 66(3), 497–546, 2004) and Keef et al. (J. Multivar. Anal. 115, 396–404, 2013). We further validate predicted models, evaluating their performance scores constructed based on the notion of an equally extreme level of quantiles and cross-validation to select the best estimates to achieve high accuracy. When estimating the excess probability of 50-dimensional data, we cluster variables with high correlation after simple data exploration and combine the results obtained from each cluster. Finally, we also provide post-mortem analysis based on the ground truth.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Extremes
Extremes MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-STATISTICS & PROBABILITY
CiteScore
2.20
自引率
7.70%
发文量
15
审稿时长
>12 weeks
期刊介绍: Extremes publishes original research on all aspects of statistical extreme value theory and its applications in science, engineering, economics and other fields. Authoritative and timely reviews of theoretical advances and of extreme value methods and problems in important applied areas, including detailed case studies, are welcome and will be a regular feature. All papers are refereed. Publication will be swift: in particular electronic submission and correspondence is encouraged. Statistical extreme value methods encompass a very wide range of problems: Extreme waves, rainfall, and floods are of basic importance in oceanography and hydrology, as are high windspeeds and extreme temperatures in meteorology and catastrophic claims in insurance. The waveforms and extremes of random loads determine lifelengths in structural safety, corrosion and metal fatigue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信