非对称 Zeta 电位对广义 Phan-Thien-Tanner 流体电渗流的影响

IF 1.4 4区 工程技术 Q2 ENGINEERING, MULTIDISCIPLINARY
A. M. Ribau, L. L. Ferrás, M. L. Morgado, M. Rebelo, F. T. Pinho, A. M. Afonso
{"title":"非对称 Zeta 电位对广义 Phan-Thien-Tanner 流体电渗流的影响","authors":"A. M. Ribau, L. L. Ferrás, M. L. Morgado, M. Rebelo, F. T. Pinho, A. M. Afonso","doi":"10.1007/s10665-024-10387-7","DOIUrl":null,"url":null,"abstract":"<p>Electrokinetic flows driven by electro-osmotic forces are especially relevant in micro and nano-devices, presenting specific applications in medicine, biochemistry, and miniaturized industrial processes. In this work, we integrate analytical solutions with numerical methodologies to explore the fluid dynamics of viscoelastic electro-osmotic/pressure-driven fluid flows (described by the generalized Phan–Thien–Tanner (gPTT) constitutive equation) in a microchannel under asymmetric zeta potential conditions. The constitutive equation incorporates the Mittag–Leffler function with two parameters (<span>\\(\\alpha \\)</span> and <span>\\(\\beta \\)</span>), which regulate the rate of destruction of junctions in a network model. We analyze the impact of the various model parameters on the velocity profile and observe that our newly proposed model provides a more comprehensive depiction of flow behavior compared to traditional models, rendering it suitable for modeling complex viscoelastic flows.</p>","PeriodicalId":50204,"journal":{"name":"Journal of Engineering Mathematics","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The effect of asymmetric zeta potentials on the electro-osmotic flow of a generalized Phan–Thien–Tanner fluid\",\"authors\":\"A. M. Ribau, L. L. Ferrás, M. L. Morgado, M. Rebelo, F. T. Pinho, A. M. Afonso\",\"doi\":\"10.1007/s10665-024-10387-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Electrokinetic flows driven by electro-osmotic forces are especially relevant in micro and nano-devices, presenting specific applications in medicine, biochemistry, and miniaturized industrial processes. In this work, we integrate analytical solutions with numerical methodologies to explore the fluid dynamics of viscoelastic electro-osmotic/pressure-driven fluid flows (described by the generalized Phan–Thien–Tanner (gPTT) constitutive equation) in a microchannel under asymmetric zeta potential conditions. The constitutive equation incorporates the Mittag–Leffler function with two parameters (<span>\\\\(\\\\alpha \\\\)</span> and <span>\\\\(\\\\beta \\\\)</span>), which regulate the rate of destruction of junctions in a network model. We analyze the impact of the various model parameters on the velocity profile and observe that our newly proposed model provides a more comprehensive depiction of flow behavior compared to traditional models, rendering it suitable for modeling complex viscoelastic flows.</p>\",\"PeriodicalId\":50204,\"journal\":{\"name\":\"Journal of Engineering Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Engineering Mathematics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10665-024-10387-7\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering Mathematics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10665-024-10387-7","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

由电渗透力驱动的电动力流在微型和纳米设备中尤为重要,在医学、生物化学和微型化工业过程中有着特殊的应用。在这项工作中,我们将分析求解与数值方法相结合,探索了非对称泽塔电位条件下微通道中粘弹性电渗/压力驱动流体流(用广义 Phan-Thien-Tanner (gPTT) 构成方程描述)的流体动力学。该构成方程包含两个参数(\(\alpha \)和\(\beta \))的 Mittag-Leffler 函数,这两个参数调节网络模型中连接的破坏速度。我们分析了各种模型参数对速度剖面的影响,发现与传统模型相比,我们新提出的模型能更全面地描述流动行为,使其适用于复杂粘弹性流动的建模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The effect of asymmetric zeta potentials on the electro-osmotic flow of a generalized Phan–Thien–Tanner fluid

The effect of asymmetric zeta potentials on the electro-osmotic flow of a generalized Phan–Thien–Tanner fluid

Electrokinetic flows driven by electro-osmotic forces are especially relevant in micro and nano-devices, presenting specific applications in medicine, biochemistry, and miniaturized industrial processes. In this work, we integrate analytical solutions with numerical methodologies to explore the fluid dynamics of viscoelastic electro-osmotic/pressure-driven fluid flows (described by the generalized Phan–Thien–Tanner (gPTT) constitutive equation) in a microchannel under asymmetric zeta potential conditions. The constitutive equation incorporates the Mittag–Leffler function with two parameters (\(\alpha \) and \(\beta \)), which regulate the rate of destruction of junctions in a network model. We analyze the impact of the various model parameters on the velocity profile and observe that our newly proposed model provides a more comprehensive depiction of flow behavior compared to traditional models, rendering it suitable for modeling complex viscoelastic flows.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Engineering Mathematics
Journal of Engineering Mathematics 工程技术-工程:综合
CiteScore
2.10
自引率
7.70%
发文量
44
审稿时长
6 months
期刊介绍: The aim of this journal is to promote the application of mathematics to problems from engineering and the applied sciences. It also aims to emphasize the intrinsic unity, through mathematics, of the fundamental problems of applied and engineering science. The scope of the journal includes the following: • Mathematics: Ordinary and partial differential equations, Integral equations, Asymptotics, Variational and functional−analytic methods, Numerical analysis, Computational methods. • Applied Fields: Continuum mechanics, Stability theory, Wave propagation, Diffusion, Heat and mass transfer, Free−boundary problems; Fluid mechanics: Aero− and hydrodynamics, Boundary layers, Shock waves, Fluid machinery, Fluid−structure interactions, Convection, Combustion, Acoustics, Multi−phase flows, Transition and turbulence, Creeping flow, Rheology, Porous−media flows, Ocean engineering, Atmospheric engineering, Non-Newtonian flows, Ship hydrodynamics; Solid mechanics: Elasticity, Classical mechanics, Nonlinear mechanics, Vibrations, Plates and shells, Fracture mechanics; Biomedical engineering, Geophysical engineering, Reaction−diffusion problems; and related areas. The Journal also publishes occasional invited ''Perspectives'' articles by distinguished researchers reviewing and bringing their authoritative overview to recent developments in topics of current interest in their area of expertise. Authors wishing to suggest topics for such articles should contact the Editors-in-Chief directly. Prospective authors are encouraged to consult recent issues of the journal in order to judge whether or not their manuscript is consistent with the style and content of published papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信