{"title":"非均质环境中球形无血管癌症肿瘤营养分布的数学模型","authors":"Panayiotis Vafeas, Polycarpos K. Papadopoulos","doi":"10.1007/s10665-024-10389-5","DOIUrl":null,"url":null,"abstract":"<p>When a cancerous cell colony grows within a healthy environment, the entire structure can be modelled as a continuous two-phase fluid with five bounded compartments, governed by the laws of mass conservation, Fick’s diffusion law, and fluid mechanics principles. The interfaces of the five bounded compartments of the colony are defined by critical values of nutrient concentration. In studying the evolution of the exterior tumour boundary, nutrient concentration is the primary parameter. Although most existing research focuses on spherical tumours, significant implications for nutrient distribution emerge when spherical symmetry is abandoned, such as the occurrence of critical values at specific points rather than across the entire surface. In this work, we consider an oblate spheroidal tumour and investigate the effects of non-homogeneity in both nutrient supply and consumption rates. Our findings indicate that critical values are encountered within the interior of a thin layer, rather than at a single interface, although the interface is still included. We study the variation of nutrient concentration on the tumour’s interfaces through plots, highlighting the critical locations. The prolate spheroidal case can be derived via a simple transformation, and comparisons with similar spherical models are also discussed.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A mathematical model for the nutrient distribution of a spheroidal avascular cancer tumour within an inhomogeneous environment\",\"authors\":\"Panayiotis Vafeas, Polycarpos K. Papadopoulos\",\"doi\":\"10.1007/s10665-024-10389-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>When a cancerous cell colony grows within a healthy environment, the entire structure can be modelled as a continuous two-phase fluid with five bounded compartments, governed by the laws of mass conservation, Fick’s diffusion law, and fluid mechanics principles. The interfaces of the five bounded compartments of the colony are defined by critical values of nutrient concentration. In studying the evolution of the exterior tumour boundary, nutrient concentration is the primary parameter. Although most existing research focuses on spherical tumours, significant implications for nutrient distribution emerge when spherical symmetry is abandoned, such as the occurrence of critical values at specific points rather than across the entire surface. In this work, we consider an oblate spheroidal tumour and investigate the effects of non-homogeneity in both nutrient supply and consumption rates. Our findings indicate that critical values are encountered within the interior of a thin layer, rather than at a single interface, although the interface is still included. We study the variation of nutrient concentration on the tumour’s interfaces through plots, highlighting the critical locations. The prolate spheroidal case can be derived via a simple transformation, and comparisons with similar spherical models are also discussed.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10665-024-10389-5\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10665-024-10389-5","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A mathematical model for the nutrient distribution of a spheroidal avascular cancer tumour within an inhomogeneous environment
When a cancerous cell colony grows within a healthy environment, the entire structure can be modelled as a continuous two-phase fluid with five bounded compartments, governed by the laws of mass conservation, Fick’s diffusion law, and fluid mechanics principles. The interfaces of the five bounded compartments of the colony are defined by critical values of nutrient concentration. In studying the evolution of the exterior tumour boundary, nutrient concentration is the primary parameter. Although most existing research focuses on spherical tumours, significant implications for nutrient distribution emerge when spherical symmetry is abandoned, such as the occurrence of critical values at specific points rather than across the entire surface. In this work, we consider an oblate spheroidal tumour and investigate the effects of non-homogeneity in both nutrient supply and consumption rates. Our findings indicate that critical values are encountered within the interior of a thin layer, rather than at a single interface, although the interface is still included. We study the variation of nutrient concentration on the tumour’s interfaces through plots, highlighting the critical locations. The prolate spheroidal case can be derived via a simple transformation, and comparisons with similar spherical models are also discussed.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.