多维分区的二维嵌入

Marina Evers;Lars Linsen
{"title":"多维分区的二维嵌入","authors":"Marina Evers;Lars Linsen","doi":"10.1109/TVCG.2024.3456394","DOIUrl":null,"url":null,"abstract":"Partitionings (or segmentations) divide a given domain into disjoint connected regions whose union forms again the entire domain. Multi-dimensional partitionings occur, for example, when analyzing parameter spaces of simulation models, where each segment of the partitioning represents a region of similar model behavior. Having computed a partitioning, one is commonly interested in understanding how large the segments are and which segments lie next to each other. While visual representations of 2D domain partitionings that reveal sizes and neighborhoods are straightforward, this is no longer the case when considering multi-dimensional domains of three or more dimensions. We propose an algorithm for computing 2D embeddings of multi-dimensional partitionings. The embedding shall have the following properties: It shall maintain the topology of the partitioning and optimize the area sizes and joint boundary lengths of the embedded segments to match the respective sizes and lengths in the multi-dimensional domain. We demonstrate the effectiveness of our approach by applying it to different use cases, including the visual exploration of 3D spatial domain segmentations and multi-dimensional parameter space partitionings of simulation ensembles. We numerically evaluate our algorithm with respect to how well sizes and lengths are preserved depending on the dimensionality of the domain and the number of segments.","PeriodicalId":94035,"journal":{"name":"IEEE transactions on visualization and computer graphics","volume":"31 1","pages":"218-228"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"2D Embeddings of Multi-Dimensional Partitionings\",\"authors\":\"Marina Evers;Lars Linsen\",\"doi\":\"10.1109/TVCG.2024.3456394\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Partitionings (or segmentations) divide a given domain into disjoint connected regions whose union forms again the entire domain. Multi-dimensional partitionings occur, for example, when analyzing parameter spaces of simulation models, where each segment of the partitioning represents a region of similar model behavior. Having computed a partitioning, one is commonly interested in understanding how large the segments are and which segments lie next to each other. While visual representations of 2D domain partitionings that reveal sizes and neighborhoods are straightforward, this is no longer the case when considering multi-dimensional domains of three or more dimensions. We propose an algorithm for computing 2D embeddings of multi-dimensional partitionings. The embedding shall have the following properties: It shall maintain the topology of the partitioning and optimize the area sizes and joint boundary lengths of the embedded segments to match the respective sizes and lengths in the multi-dimensional domain. We demonstrate the effectiveness of our approach by applying it to different use cases, including the visual exploration of 3D spatial domain segmentations and multi-dimensional parameter space partitionings of simulation ensembles. We numerically evaluate our algorithm with respect to how well sizes and lengths are preserved depending on the dimensionality of the domain and the number of segments.\",\"PeriodicalId\":94035,\"journal\":{\"name\":\"IEEE transactions on visualization and computer graphics\",\"volume\":\"31 1\",\"pages\":\"218-228\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on visualization and computer graphics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10677349/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on visualization and computer graphics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10677349/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

分区(或分段)将给定的域划分为互不相连的区域,这些区域的结合又构成了整个域。例如,在分析仿真模型的参数空间时,就会出现多维分区,分区的每个部分都代表了模型行为相似的区域。计算出分区后,人们通常想了解这些分区有多大,哪些分区彼此相邻。虽然二维域划分的可视化表示可以直接显示大小和邻域,但在考虑三维或更多维的多维域时,情况就不是这样了。我们提出了一种计算多维分区二维嵌入的算法。嵌入应具有以下特性:它应保持分区的拓扑结构,并优化嵌入段的面积大小和联合边界长度,使其与多维域中各自的大小和长度相匹配。我们将我们的方法应用于不同的用例,包括三维空间域分割的可视化探索和仿真集合的多维参数空间分割,从而证明了我们方法的有效性。我们根据域的维度和分段的数量,对算法的尺寸和长度的保留程度进行了数值评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
2D Embeddings of Multi-Dimensional Partitionings
Partitionings (or segmentations) divide a given domain into disjoint connected regions whose union forms again the entire domain. Multi-dimensional partitionings occur, for example, when analyzing parameter spaces of simulation models, where each segment of the partitioning represents a region of similar model behavior. Having computed a partitioning, one is commonly interested in understanding how large the segments are and which segments lie next to each other. While visual representations of 2D domain partitionings that reveal sizes and neighborhoods are straightforward, this is no longer the case when considering multi-dimensional domains of three or more dimensions. We propose an algorithm for computing 2D embeddings of multi-dimensional partitionings. The embedding shall have the following properties: It shall maintain the topology of the partitioning and optimize the area sizes and joint boundary lengths of the embedded segments to match the respective sizes and lengths in the multi-dimensional domain. We demonstrate the effectiveness of our approach by applying it to different use cases, including the visual exploration of 3D spatial domain segmentations and multi-dimensional parameter space partitionings of simulation ensembles. We numerically evaluate our algorithm with respect to how well sizes and lengths are preserved depending on the dimensionality of the domain and the number of segments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信