板块几何中的动力学趋化模型及其扩散极限

Herbert Egger, Kathrin Hellmuth, Nora Philippi, Matthias Schlottbom
{"title":"板块几何中的动力学趋化模型及其扩散极限","authors":"Herbert Egger, Kathrin Hellmuth, Nora Philippi, Matthias Schlottbom","doi":"arxiv-2408.17243","DOIUrl":null,"url":null,"abstract":"Chemotaxis describes the intricate interplay of cellular motion in response\nto a chemical signal. We here consider the case of slab geometry which models\nchemotactic motion between two infinite membranes. Like previous works, we are\nparticularly interested in the asymptotic regime of high tumbling rates. We\nestablish local existence and uniqueness of solutions to the kinetic equation\nand show their convergence towards solutions of a parabolic Keller-Segel model\nin the asymptotic limit. In addition, we prove convergence rates with respect\nto the asymptotic parameter under additional regularity assumptions on the\nproblem data. Particular difficulties in our analysis are caused by vanishing\nvelocities in the kinetic model as well as the occurrence of boundary terms.","PeriodicalId":501321,"journal":{"name":"arXiv - QuanBio - Cell Behavior","volume":"50 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A kinetic chemotaxis model and its diffusion limit in slab geometry\",\"authors\":\"Herbert Egger, Kathrin Hellmuth, Nora Philippi, Matthias Schlottbom\",\"doi\":\"arxiv-2408.17243\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Chemotaxis describes the intricate interplay of cellular motion in response\\nto a chemical signal. We here consider the case of slab geometry which models\\nchemotactic motion between two infinite membranes. Like previous works, we are\\nparticularly interested in the asymptotic regime of high tumbling rates. We\\nestablish local existence and uniqueness of solutions to the kinetic equation\\nand show their convergence towards solutions of a parabolic Keller-Segel model\\nin the asymptotic limit. In addition, we prove convergence rates with respect\\nto the asymptotic parameter under additional regularity assumptions on the\\nproblem data. Particular difficulties in our analysis are caused by vanishing\\nvelocities in the kinetic model as well as the occurrence of boundary terms.\",\"PeriodicalId\":501321,\"journal\":{\"name\":\"arXiv - QuanBio - Cell Behavior\",\"volume\":\"50 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuanBio - Cell Behavior\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.17243\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Cell Behavior","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.17243","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

趋化作用描述了细胞运动响应化学信号时错综复杂的相互作用。我们在此考虑了板状几何的情况,它模拟了两个无限膜之间的趋化运动。与之前的研究一样,我们尤其关注高翻滚率的渐进机制。我们建立了动力学方程解的局部存在性和唯一性,并证明了它们在渐近极限中向抛物线凯勒-西格尔模型的解收敛。此外,我们还证明了在问题数据的额外正则性假设下,关于渐近参数的收敛率。动力学模型中的消失位移以及边界项的出现给我们的分析带来了特别的困难。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A kinetic chemotaxis model and its diffusion limit in slab geometry
Chemotaxis describes the intricate interplay of cellular motion in response to a chemical signal. We here consider the case of slab geometry which models chemotactic motion between two infinite membranes. Like previous works, we are particularly interested in the asymptotic regime of high tumbling rates. We establish local existence and uniqueness of solutions to the kinetic equation and show their convergence towards solutions of a parabolic Keller-Segel model in the asymptotic limit. In addition, we prove convergence rates with respect to the asymptotic parameter under additional regularity assumptions on the problem data. Particular difficulties in our analysis are caused by vanishing velocities in the kinetic model as well as the occurrence of boundary terms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信