J. Beierlein, O. A. Egorov, P. Gagel, T. H. Harder, A. Wolf, M. Emmerling, S. Betzold, F. Jabeen, L. Ma, S. Höfling, U. Peschel, S. Klembt
{"title":"激子-极化子凝聚态的拓扑光波导","authors":"J. Beierlein, O. A. Egorov, P. Gagel, T. H. Harder, A. Wolf, M. Emmerling, S. Betzold, F. Jabeen, L. Ma, S. Höfling, U. Peschel, S. Klembt","doi":"10.1002/andp.202400229","DOIUrl":null,"url":null,"abstract":"<p>1D models with topological non-trivial band structures are a simple and effective way to study novel and exciting concepts in topological photonics. In this work, the propagation of light-matter quasi-particles, so-called exciton-polaritons, is studied in waveguide arrays. Specifically, topological states are being investigated at the interface between dimer chains, characterized by a non-zero winding number. In order to exercise precise control over the polariton propagation, non-resonant laser excitation, as well as resonant excitation, are studied in transmission geometry. The results highlight a new platform for the study of quantum fluids of light and non-linear optical propagation effects in coupled semiconductor waveguides.</p>","PeriodicalId":7896,"journal":{"name":"Annalen der Physik","volume":"536 11","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/andp.202400229","citationCount":"0","resultStr":"{\"title\":\"Topological Optical Waveguiding of Exciton-Polariton Condensates\",\"authors\":\"J. Beierlein, O. A. Egorov, P. Gagel, T. H. Harder, A. Wolf, M. Emmerling, S. Betzold, F. Jabeen, L. Ma, S. Höfling, U. Peschel, S. Klembt\",\"doi\":\"10.1002/andp.202400229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>1D models with topological non-trivial band structures are a simple and effective way to study novel and exciting concepts in topological photonics. In this work, the propagation of light-matter quasi-particles, so-called exciton-polaritons, is studied in waveguide arrays. Specifically, topological states are being investigated at the interface between dimer chains, characterized by a non-zero winding number. In order to exercise precise control over the polariton propagation, non-resonant laser excitation, as well as resonant excitation, are studied in transmission geometry. The results highlight a new platform for the study of quantum fluids of light and non-linear optical propagation effects in coupled semiconductor waveguides.</p>\",\"PeriodicalId\":7896,\"journal\":{\"name\":\"Annalen der Physik\",\"volume\":\"536 11\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/andp.202400229\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annalen der Physik\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/andp.202400229\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annalen der Physik","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/andp.202400229","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Topological Optical Waveguiding of Exciton-Polariton Condensates
1D models with topological non-trivial band structures are a simple and effective way to study novel and exciting concepts in topological photonics. In this work, the propagation of light-matter quasi-particles, so-called exciton-polaritons, is studied in waveguide arrays. Specifically, topological states are being investigated at the interface between dimer chains, characterized by a non-zero winding number. In order to exercise precise control over the polariton propagation, non-resonant laser excitation, as well as resonant excitation, are studied in transmission geometry. The results highlight a new platform for the study of quantum fluids of light and non-linear optical propagation effects in coupled semiconductor waveguides.
期刊介绍:
Annalen der Physik (AdP) is one of the world''s most renowned physics journals with an over 225 years'' tradition of excellence. Based on the fame of seminal papers by Einstein, Planck and many others, the journal is now tuned towards today''s most exciting findings including the annual Nobel Lectures. AdP comprises all areas of physics, with particular emphasis on important, significant and highly relevant results. Topics range from fundamental research to forefront applications including dynamic and interdisciplinary fields. The journal covers theory, simulation and experiment, e.g., but not exclusively, in condensed matter, quantum physics, photonics, materials physics, high energy, gravitation and astrophysics. It welcomes Rapid Research Letters, Original Papers, Review and Feature Articles.