{"title":"利用等效电路模型设计 10.8 至 34.6 GHz 超宽带透明超材料吸收器","authors":"Yongxi Cai, Jiaqing Liu, Jizhe Zhang, Xiao Li, Daxing Dong, Xiaogang Yin, Yangyang Fu, Youwen Liu","doi":"10.1002/andp.202400107","DOIUrl":null,"url":null,"abstract":"<p>In this paper, an ultra-wideband metamaterial absorber (UWMA) is proposed and demonstrated by using a transparent and flexible sandwich structure, which consists of a top patterned double-square loop (DSL) of conductive film, the polymer interlayer, the bottom conductive film. The work presents the UWMA's equivalent circuit model for a macroscopic analysis of its physical mechanism. Further, optimizing UWMA's structural parameters using this equivalent circuit model can greatly enhance its efficiency. The absorption coefficient of the designed structure achieves over 90% within the wide frequency range from 10.82 to 34.59 GHz due to the overlapping of three absorption bands. The experimental results indicate that the absorption coefficient of the fabricated structure exceeds 60% in the frequency range of 10.45–35.28 GHz, and reaches 90% in the majority of frequency range of 10.71–28.51 GHz, while its averaged optical transparency in the visible spectrum exceeds 75%. The UWMA achieves high transparency due to a small ratio of the surface area occupied by the ITO pattern to the total area and realizes multiple-resonance ultra-wideband absorption with conformality while maintaining a thickness of only 2.2 mm, which has diverse applications in the field of electromagnetics, including aircraft stealth, transparent chambers, and flexible electronic screens.</p>","PeriodicalId":7896,"journal":{"name":"Annalen der Physik","volume":"536 12","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of a 10.8 to 34.6 GHz Ultra-Wideband Transparent Metamaterial Absorber Using an Equivalent Circuit Model\",\"authors\":\"Yongxi Cai, Jiaqing Liu, Jizhe Zhang, Xiao Li, Daxing Dong, Xiaogang Yin, Yangyang Fu, Youwen Liu\",\"doi\":\"10.1002/andp.202400107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, an ultra-wideband metamaterial absorber (UWMA) is proposed and demonstrated by using a transparent and flexible sandwich structure, which consists of a top patterned double-square loop (DSL) of conductive film, the polymer interlayer, the bottom conductive film. The work presents the UWMA's equivalent circuit model for a macroscopic analysis of its physical mechanism. Further, optimizing UWMA's structural parameters using this equivalent circuit model can greatly enhance its efficiency. The absorption coefficient of the designed structure achieves over 90% within the wide frequency range from 10.82 to 34.59 GHz due to the overlapping of three absorption bands. The experimental results indicate that the absorption coefficient of the fabricated structure exceeds 60% in the frequency range of 10.45–35.28 GHz, and reaches 90% in the majority of frequency range of 10.71–28.51 GHz, while its averaged optical transparency in the visible spectrum exceeds 75%. The UWMA achieves high transparency due to a small ratio of the surface area occupied by the ITO pattern to the total area and realizes multiple-resonance ultra-wideband absorption with conformality while maintaining a thickness of only 2.2 mm, which has diverse applications in the field of electromagnetics, including aircraft stealth, transparent chambers, and flexible electronic screens.</p>\",\"PeriodicalId\":7896,\"journal\":{\"name\":\"Annalen der Physik\",\"volume\":\"536 12\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annalen der Physik\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/andp.202400107\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annalen der Physik","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/andp.202400107","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Design of a 10.8 to 34.6 GHz Ultra-Wideband Transparent Metamaterial Absorber Using an Equivalent Circuit Model
In this paper, an ultra-wideband metamaterial absorber (UWMA) is proposed and demonstrated by using a transparent and flexible sandwich structure, which consists of a top patterned double-square loop (DSL) of conductive film, the polymer interlayer, the bottom conductive film. The work presents the UWMA's equivalent circuit model for a macroscopic analysis of its physical mechanism. Further, optimizing UWMA's structural parameters using this equivalent circuit model can greatly enhance its efficiency. The absorption coefficient of the designed structure achieves over 90% within the wide frequency range from 10.82 to 34.59 GHz due to the overlapping of three absorption bands. The experimental results indicate that the absorption coefficient of the fabricated structure exceeds 60% in the frequency range of 10.45–35.28 GHz, and reaches 90% in the majority of frequency range of 10.71–28.51 GHz, while its averaged optical transparency in the visible spectrum exceeds 75%. The UWMA achieves high transparency due to a small ratio of the surface area occupied by the ITO pattern to the total area and realizes multiple-resonance ultra-wideband absorption with conformality while maintaining a thickness of only 2.2 mm, which has diverse applications in the field of electromagnetics, including aircraft stealth, transparent chambers, and flexible electronic screens.
期刊介绍:
Annalen der Physik (AdP) is one of the world''s most renowned physics journals with an over 225 years'' tradition of excellence. Based on the fame of seminal papers by Einstein, Planck and many others, the journal is now tuned towards today''s most exciting findings including the annual Nobel Lectures. AdP comprises all areas of physics, with particular emphasis on important, significant and highly relevant results. Topics range from fundamental research to forefront applications including dynamic and interdisciplinary fields. The journal covers theory, simulation and experiment, e.g., but not exclusively, in condensed matter, quantum physics, photonics, materials physics, high energy, gravitation and astrophysics. It welcomes Rapid Research Letters, Original Papers, Review and Feature Articles.