$$\overline{partial }$$ 紧凑表面的半正反锥分裂子的补集同调

IF 1 3区 数学 Q1 MATHEMATICS
Takayuki Koike
{"title":"$$\\overline{partial }$$ 紧凑表面的半正反锥分裂子的补集同调","authors":"Takayuki Koike","doi":"10.1007/s00209-024-03587-5","DOIUrl":null,"url":null,"abstract":"<p>Let <i>X</i> be a non-singular compact complex surface such that the anticanonical line bundle admits a smooth Hermitian metric with semi-positive curvature. For a non-singular hypersurface <i>Y</i> which defines an anticanonical divisor, we investigate the <span>\\(\\overline{\\partial }\\)</span> cohomology group <span>\\(H^1(M, \\mathcal {O}_M)\\)</span> of the complement <span>\\(M=X\\setminus Y\\)</span>.</p>","PeriodicalId":18278,"journal":{"name":"Mathematische Zeitschrift","volume":"18 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"$$\\\\overline{\\\\partial }$$ cohomology of the complement of a semi-positive anticanonical divisor of a compact surface\",\"authors\":\"Takayuki Koike\",\"doi\":\"10.1007/s00209-024-03587-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <i>X</i> be a non-singular compact complex surface such that the anticanonical line bundle admits a smooth Hermitian metric with semi-positive curvature. For a non-singular hypersurface <i>Y</i> which defines an anticanonical divisor, we investigate the <span>\\\\(\\\\overline{\\\\partial }\\\\)</span> cohomology group <span>\\\\(H^1(M, \\\\mathcal {O}_M)\\\\)</span> of the complement <span>\\\\(M=X\\\\setminus Y\\\\)</span>.</p>\",\"PeriodicalId\":18278,\"journal\":{\"name\":\"Mathematische Zeitschrift\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Zeitschrift\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00209-024-03587-5\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Zeitschrift","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00209-024-03587-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

让 X 是一个非邢状紧凑复曲面,使得反锥线束具有半正曲率的光滑赫米特度量。对于定义了反偶函数除数的非星超曲面 Y,我们研究了补集(M=Xsetminus Y)的同调群(H^1(M, \mathcal {O}_M))。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
$$\overline{\partial }$$ cohomology of the complement of a semi-positive anticanonical divisor of a compact surface

Let X be a non-singular compact complex surface such that the anticanonical line bundle admits a smooth Hermitian metric with semi-positive curvature. For a non-singular hypersurface Y which defines an anticanonical divisor, we investigate the \(\overline{\partial }\) cohomology group \(H^1(M, \mathcal {O}_M)\) of the complement \(M=X\setminus Y\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
236
审稿时长
3-6 weeks
期刊介绍: "Mathematische Zeitschrift" is devoted to pure and applied mathematics. Reviews, problems etc. will not be published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信