{"title":"$$\\overline{partial }$$ 紧凑表面的半正反锥分裂子的补集同调","authors":"Takayuki Koike","doi":"10.1007/s00209-024-03587-5","DOIUrl":null,"url":null,"abstract":"<p>Let <i>X</i> be a non-singular compact complex surface such that the anticanonical line bundle admits a smooth Hermitian metric with semi-positive curvature. For a non-singular hypersurface <i>Y</i> which defines an anticanonical divisor, we investigate the <span>\\(\\overline{\\partial }\\)</span> cohomology group <span>\\(H^1(M, \\mathcal {O}_M)\\)</span> of the complement <span>\\(M=X\\setminus Y\\)</span>.</p>","PeriodicalId":18278,"journal":{"name":"Mathematische Zeitschrift","volume":"18 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"$$\\\\overline{\\\\partial }$$ cohomology of the complement of a semi-positive anticanonical divisor of a compact surface\",\"authors\":\"Takayuki Koike\",\"doi\":\"10.1007/s00209-024-03587-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <i>X</i> be a non-singular compact complex surface such that the anticanonical line bundle admits a smooth Hermitian metric with semi-positive curvature. For a non-singular hypersurface <i>Y</i> which defines an anticanonical divisor, we investigate the <span>\\\\(\\\\overline{\\\\partial }\\\\)</span> cohomology group <span>\\\\(H^1(M, \\\\mathcal {O}_M)\\\\)</span> of the complement <span>\\\\(M=X\\\\setminus Y\\\\)</span>.</p>\",\"PeriodicalId\":18278,\"journal\":{\"name\":\"Mathematische Zeitschrift\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Zeitschrift\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00209-024-03587-5\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Zeitschrift","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00209-024-03587-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
让 X 是一个非邢状紧凑复曲面,使得反锥线束具有半正曲率的光滑赫米特度量。对于定义了反偶函数除数的非星超曲面 Y,我们研究了补集(M=Xsetminus Y)的同调群(H^1(M, \mathcal {O}_M))。
$$\overline{\partial }$$ cohomology of the complement of a semi-positive anticanonical divisor of a compact surface
Let X be a non-singular compact complex surface such that the anticanonical line bundle admits a smooth Hermitian metric with semi-positive curvature. For a non-singular hypersurface Y which defines an anticanonical divisor, we investigate the \(\overline{\partial }\) cohomology group \(H^1(M, \mathcal {O}_M)\) of the complement \(M=X\setminus Y\).