库兹涅佐夫通过 Hochschild-Serre 代数的法诺三折猜想

IF 1 3区 数学 Q1 MATHEMATICS
Xun Lin, Shizhuo Zhang
{"title":"库兹涅佐夫通过 Hochschild-Serre 代数的法诺三折猜想","authors":"Xun Lin, Shizhuo Zhang","doi":"10.1007/s00209-024-03586-6","DOIUrl":null,"url":null,"abstract":"<p>Let <i>Y</i> be a smooth quartic double solid regarded as a degree 4 hypersurface of the weighted projective space <span>\\(\\mathbb {P}(1,1,1,1,2)\\)</span>. We study the multiplication of the Hochschild-Serre algebra of its Kuznetsov component <span>\\(\\mathcal {K}u(Y)\\)</span> via matrix factorization. As an application, we give a new disproof of Kuznetsov’s Fano threefold conjecture.</p>","PeriodicalId":18278,"journal":{"name":"Mathematische Zeitschrift","volume":"12 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kuznetsov’s Fano threefold conjecture via Hochschild–Serre algebra\",\"authors\":\"Xun Lin, Shizhuo Zhang\",\"doi\":\"10.1007/s00209-024-03586-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <i>Y</i> be a smooth quartic double solid regarded as a degree 4 hypersurface of the weighted projective space <span>\\\\(\\\\mathbb {P}(1,1,1,1,2)\\\\)</span>. We study the multiplication of the Hochschild-Serre algebra of its Kuznetsov component <span>\\\\(\\\\mathcal {K}u(Y)\\\\)</span> via matrix factorization. As an application, we give a new disproof of Kuznetsov’s Fano threefold conjecture.</p>\",\"PeriodicalId\":18278,\"journal\":{\"name\":\"Mathematische Zeitschrift\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Zeitschrift\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00209-024-03586-6\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Zeitschrift","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00209-024-03586-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设 Y 是光滑的四元二次实体,视为加权投影空间 \(\mathbb {P}(1,1,1,1,2)\) 的 4 度超曲面。我们通过矩阵因式分解来研究其库兹涅佐夫分量 \(\mathcal {K}u(Y)\) 的霍赫希尔德-塞雷代数的乘法。作为应用,我们给出了库兹涅佐夫法诺三折猜想的新反证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Kuznetsov’s Fano threefold conjecture via Hochschild–Serre algebra

Let Y be a smooth quartic double solid regarded as a degree 4 hypersurface of the weighted projective space \(\mathbb {P}(1,1,1,1,2)\). We study the multiplication of the Hochschild-Serre algebra of its Kuznetsov component \(\mathcal {K}u(Y)\) via matrix factorization. As an application, we give a new disproof of Kuznetsov’s Fano threefold conjecture.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
236
审稿时长
3-6 weeks
期刊介绍: "Mathematische Zeitschrift" is devoted to pure and applied mathematics. Reviews, problems etc. will not be published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信