{"title":"光滑超曲面上霍奇理想的消失定理","authors":"Anh Duc Vo","doi":"10.1007/s00209-024-03576-8","DOIUrl":null,"url":null,"abstract":"<p>We use a Koszul-type resolution to prove a weak version of Bott’s vanishing theorem for smooth hypersurfaces in <span>\\(\\mathbb {P}^n\\)</span> and use this result to prove a vanishing theorem for Hodge ideals associated to an effective Cartier divisor on a hypersurface. This extends an earlier result of Mustaţă and Popa.</p>","PeriodicalId":18278,"journal":{"name":"Mathematische Zeitschrift","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vanishing theorem for Hodge ideals on smooth hypersurfaces\",\"authors\":\"Anh Duc Vo\",\"doi\":\"10.1007/s00209-024-03576-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We use a Koszul-type resolution to prove a weak version of Bott’s vanishing theorem for smooth hypersurfaces in <span>\\\\(\\\\mathbb {P}^n\\\\)</span> and use this result to prove a vanishing theorem for Hodge ideals associated to an effective Cartier divisor on a hypersurface. This extends an earlier result of Mustaţă and Popa.</p>\",\"PeriodicalId\":18278,\"journal\":{\"name\":\"Mathematische Zeitschrift\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Zeitschrift\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00209-024-03576-8\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Zeitschrift","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00209-024-03576-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Vanishing theorem for Hodge ideals on smooth hypersurfaces
We use a Koszul-type resolution to prove a weak version of Bott’s vanishing theorem for smooth hypersurfaces in \(\mathbb {P}^n\) and use this result to prove a vanishing theorem for Hodge ideals associated to an effective Cartier divisor on a hypersurface. This extends an earlier result of Mustaţă and Popa.