修正的麦克唐纳多项式和多物种零范围过程:二

IF 1 3区 数学 Q1 MATHEMATICS
Arvind Ayyer, Olya Mandelshtam, James B. Martin
{"title":"修正的麦克唐纳多项式和多物种零范围过程:二","authors":"Arvind Ayyer, Olya Mandelshtam, James B. Martin","doi":"10.1007/s00209-024-03548-y","DOIUrl":null,"url":null,"abstract":"<p>In a previous part of this work, we gave a new tableau formula for the modified Macdonald polynomials <span>\\(\\widetilde{H}_{\\lambda }(X;q,t)\\)</span>, using a weight on tableaux involving the <i>queue inversion</i> (quinv) statistic. In this paper we explicitly describe a connection between these combinatorial objects and a class of multispecies totally asymmetric zero range processes (mTAZRP) on a ring, with site-dependent jump-rates. We construct a Markov chain on the space of tableaux of a given shape, which projects to the mTAZRP, and whose stationary distribution can be expressed in terms of quinv-weighted tableaux. We deduce that the mTAZRP has a partition function given by the modified Macdonald polynomial <span>\\(\\widetilde{H}_{\\lambda }(X;1,t)\\)</span>. The novelty here in comparison to previous works relating the stationary distribution of integrable systems to symmetric functions is that the variables <span>\\(x_1,\\ldots ,x_n\\)</span> are explicitly present as hopping rates in the mTAZRP. We also obtain interesting symmetry properties of the mTAZRP probabilities under permutation of the jump-rates between the sites. Finally, we explore a number of interesting special cases of the mTAZRP, and give explicit formulas for particle densities and correlations of the process purely in terms of modified Macdonald polynomials.</p>","PeriodicalId":18278,"journal":{"name":"Mathematische Zeitschrift","volume":"156 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modified Macdonald polynomials and the multispecies zero range process: II\",\"authors\":\"Arvind Ayyer, Olya Mandelshtam, James B. Martin\",\"doi\":\"10.1007/s00209-024-03548-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In a previous part of this work, we gave a new tableau formula for the modified Macdonald polynomials <span>\\\\(\\\\widetilde{H}_{\\\\lambda }(X;q,t)\\\\)</span>, using a weight on tableaux involving the <i>queue inversion</i> (quinv) statistic. In this paper we explicitly describe a connection between these combinatorial objects and a class of multispecies totally asymmetric zero range processes (mTAZRP) on a ring, with site-dependent jump-rates. We construct a Markov chain on the space of tableaux of a given shape, which projects to the mTAZRP, and whose stationary distribution can be expressed in terms of quinv-weighted tableaux. We deduce that the mTAZRP has a partition function given by the modified Macdonald polynomial <span>\\\\(\\\\widetilde{H}_{\\\\lambda }(X;1,t)\\\\)</span>. The novelty here in comparison to previous works relating the stationary distribution of integrable systems to symmetric functions is that the variables <span>\\\\(x_1,\\\\ldots ,x_n\\\\)</span> are explicitly present as hopping rates in the mTAZRP. We also obtain interesting symmetry properties of the mTAZRP probabilities under permutation of the jump-rates between the sites. Finally, we explore a number of interesting special cases of the mTAZRP, and give explicit formulas for particle densities and correlations of the process purely in terms of modified Macdonald polynomials.</p>\",\"PeriodicalId\":18278,\"journal\":{\"name\":\"Mathematische Zeitschrift\",\"volume\":\"156 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Zeitschrift\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00209-024-03548-y\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Zeitschrift","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00209-024-03548-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作的前一部分,我们给出了修正麦克唐纳多项式(\widetilde{H}_{\lambda }(X;q,t)\)的新表符公式,使用了涉及队列反转(quinv)统计量的表符权重。在本文中,我们明确描述了这些组合对象与环上一类多物种完全非对称零范围过程(mTAZRP)之间的联系,该过程具有依赖于站点的跳跃率。我们在给定形状的表格空间上构建了一个马尔可夫链,它投影到 mTAZRP,其静态分布可以用 quinv 加权表格来表示。我们推导出,mTAZRP 有一个由修正麦克唐纳多项式给出的分割函数 (\widetilde{H}_{\lambda }(X;1,t)\) 。与之前将可积分系统的静态分布与对称函数相关联的工作相比,这里的新颖之处在于变量 \(x_1,\ldots ,x_n\)在 mTAZRP 中明确地作为跳跃率存在。我们还得到了 mTAZRP 概率在站点间跳跃率排列下的有趣对称性。最后,我们探讨了 mTAZRP 的一些有趣特例,并给出了纯粹以修正麦克唐纳多项式表示的粒子密度和过程相关性的明确公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Modified Macdonald polynomials and the multispecies zero range process: II

Modified Macdonald polynomials and the multispecies zero range process: II

In a previous part of this work, we gave a new tableau formula for the modified Macdonald polynomials \(\widetilde{H}_{\lambda }(X;q,t)\), using a weight on tableaux involving the queue inversion (quinv) statistic. In this paper we explicitly describe a connection between these combinatorial objects and a class of multispecies totally asymmetric zero range processes (mTAZRP) on a ring, with site-dependent jump-rates. We construct a Markov chain on the space of tableaux of a given shape, which projects to the mTAZRP, and whose stationary distribution can be expressed in terms of quinv-weighted tableaux. We deduce that the mTAZRP has a partition function given by the modified Macdonald polynomial \(\widetilde{H}_{\lambda }(X;1,t)\). The novelty here in comparison to previous works relating the stationary distribution of integrable systems to symmetric functions is that the variables \(x_1,\ldots ,x_n\) are explicitly present as hopping rates in the mTAZRP. We also obtain interesting symmetry properties of the mTAZRP probabilities under permutation of the jump-rates between the sites. Finally, we explore a number of interesting special cases of the mTAZRP, and give explicit formulas for particle densities and correlations of the process purely in terms of modified Macdonald polynomials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
236
审稿时长
3-6 weeks
期刊介绍: "Mathematische Zeitschrift" is devoted to pure and applied mathematics. Reviews, problems etc. will not be published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信