磁化等离子体中强各向异性输运方程的稳健四阶有限差分离散法

L. Chacon, Jason Hamilton, Natalia Krasheninnikova
{"title":"磁化等离子体中强各向异性输运方程的稳健四阶有限差分离散法","authors":"L. Chacon, Jason Hamilton, Natalia Krasheninnikova","doi":"arxiv-2409.06070","DOIUrl":null,"url":null,"abstract":"We propose a second-order temporally implicit, fourth-order-accurate spatial\ndiscretization scheme for the strongly anisotropic heat transport equation\ncharacteristic of hot, fusion-grade plasmas. Following [Du Toit et al., Comp.\nPhys. Comm., 228 (2018)], the scheme transforms mixed-derivative diffusion\nfluxes (which are responsible for the lack of a discrete maximum principle)\ninto nonlinear advective fluxes, amenable to nonlinear-solver-friendly\nmonotonicity-preserving limiters. The scheme enables accurate multi-dimensional\nheat transport simulations with up to seven orders of magnitude of\nheat-transport-coefficient anisotropies with low cross-field numerical error\npollution and excellent algorithmic performance, with the number of linear\niterations scaling very weakly with grid resolution and grid anisotropy, and\nscaling with the square-root of the implicit timestep. We propose a multigrid\npreconditioning strategy based on a second-order-accurate approximation that\nrenders the scheme efficient and scalable under grid refinement. Several\nnumerical tests are presented that display the expected spatial convergence\nrates and strong algorithmic performance, including fully nonlinear\nmagnetohydrodynamics simulations of kink instabilities in a Bennett pinch in 2D\nhelical geometry and of ITER in 3D toroidal geometry.","PeriodicalId":501162,"journal":{"name":"arXiv - MATH - Numerical Analysis","volume":"98 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A robust fourth-order finite-difference discretization for the strongly anisotropic transport equation in magnetized plasmas\",\"authors\":\"L. Chacon, Jason Hamilton, Natalia Krasheninnikova\",\"doi\":\"arxiv-2409.06070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a second-order temporally implicit, fourth-order-accurate spatial\\ndiscretization scheme for the strongly anisotropic heat transport equation\\ncharacteristic of hot, fusion-grade plasmas. Following [Du Toit et al., Comp.\\nPhys. Comm., 228 (2018)], the scheme transforms mixed-derivative diffusion\\nfluxes (which are responsible for the lack of a discrete maximum principle)\\ninto nonlinear advective fluxes, amenable to nonlinear-solver-friendly\\nmonotonicity-preserving limiters. The scheme enables accurate multi-dimensional\\nheat transport simulations with up to seven orders of magnitude of\\nheat-transport-coefficient anisotropies with low cross-field numerical error\\npollution and excellent algorithmic performance, with the number of linear\\niterations scaling very weakly with grid resolution and grid anisotropy, and\\nscaling with the square-root of the implicit timestep. We propose a multigrid\\npreconditioning strategy based on a second-order-accurate approximation that\\nrenders the scheme efficient and scalable under grid refinement. Several\\nnumerical tests are presented that display the expected spatial convergence\\nrates and strong algorithmic performance, including fully nonlinear\\nmagnetohydrodynamics simulations of kink instabilities in a Bennett pinch in 2D\\nhelical geometry and of ITER in 3D toroidal geometry.\",\"PeriodicalId\":501162,\"journal\":{\"name\":\"arXiv - MATH - Numerical Analysis\",\"volume\":\"98 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Numerical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.06070\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们针对热核聚变级等离子体的强各向异性热传输方程特征,提出了一种二阶时隐、四阶精确的空间离散化方案。按照[Du Toit 等人,Comp.Phys. Comm., 228 (2018)],该方案将混合衍生扩散通量(这是缺乏离散最大值原理的原因)转化为非线性平动通量,适用于非线性求解器友好的单调性保留限制器。该方案可实现精确的多维热传输模拟,热传输系数各向异性高达七个数量级,同时具有较低的跨场数值误差污染和出色的算法性能,线性迭代次数随网格分辨率和网格各向异性的缩放非常微弱,并随隐式时间步长的平方根缩放。我们提出了一种基于二阶精确近似的多网格预处理策略,使该方案在网格细化时高效且可扩展。我们介绍了几项数值测试,这些测试显示了预期的空间收敛性和强大的算法性能,包括在二维螺旋几何中对贝内特夹角中的扭结不稳定性进行的全非线性磁流体力学模拟,以及在三维环形几何中对国际热核聚变实验堆进行的全非线性磁流体力学模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A robust fourth-order finite-difference discretization for the strongly anisotropic transport equation in magnetized plasmas
We propose a second-order temporally implicit, fourth-order-accurate spatial discretization scheme for the strongly anisotropic heat transport equation characteristic of hot, fusion-grade plasmas. Following [Du Toit et al., Comp. Phys. Comm., 228 (2018)], the scheme transforms mixed-derivative diffusion fluxes (which are responsible for the lack of a discrete maximum principle) into nonlinear advective fluxes, amenable to nonlinear-solver-friendly monotonicity-preserving limiters. The scheme enables accurate multi-dimensional heat transport simulations with up to seven orders of magnitude of heat-transport-coefficient anisotropies with low cross-field numerical error pollution and excellent algorithmic performance, with the number of linear iterations scaling very weakly with grid resolution and grid anisotropy, and scaling with the square-root of the implicit timestep. We propose a multigrid preconditioning strategy based on a second-order-accurate approximation that renders the scheme efficient and scalable under grid refinement. Several numerical tests are presented that display the expected spatial convergence rates and strong algorithmic performance, including fully nonlinear magnetohydrodynamics simulations of kink instabilities in a Bennett pinch in 2D helical geometry and of ITER in 3D toroidal geometry.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信