流图上的欧拉旋涡法

Sinan Wang, Yitong Deng, Molin Deng, Hong-Xing Yu, Junwei Zhou, Duowen Chen, Taku Komura, Jiajun Wu, Bo Zhu
{"title":"流图上的欧拉旋涡法","authors":"Sinan Wang, Yitong Deng, Molin Deng, Hong-Xing Yu, Junwei Zhou, Duowen Chen, Taku Komura, Jiajun Wu, Bo Zhu","doi":"arxiv-2409.06201","DOIUrl":null,"url":null,"abstract":"We present an Eulerian vortex method based on the theory of flow maps to\nsimulate the complex vortical motions of incompressible fluids. Central to our\nmethod is the novel incorporation of the flow-map transport equations for line\nelements, which, in combination with a bi-directional marching scheme for flow\nmaps, enables the high-fidelity Eulerian advection of vorticity variables. The\nfundamental motivation is that, compared to impulse $\\mathbf{m}$, which has\nbeen recently bridged with flow maps to encouraging results, vorticity\n$\\boldsymbol{\\omega}$ promises to be preferable for its numerically stability\nand physical interpretability. To realize the full potential of this novel\nformulation, we develop a new Poisson solving scheme for vorticity-to-velocity\nreconstruction that is both efficient and able to accurately handle the\ncoupling near solid boundaries. We demonstrate the efficacy of our approach\nwith a range of vortex simulation examples, including leapfrog vortices, vortex\ncollisions, cavity flow, and the formation of complex vortical structures due\nto solid-fluid interactions.","PeriodicalId":501162,"journal":{"name":"arXiv - MATH - Numerical Analysis","volume":"118 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Eulerian Vortex Method on Flow Maps\",\"authors\":\"Sinan Wang, Yitong Deng, Molin Deng, Hong-Xing Yu, Junwei Zhou, Duowen Chen, Taku Komura, Jiajun Wu, Bo Zhu\",\"doi\":\"arxiv-2409.06201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an Eulerian vortex method based on the theory of flow maps to\\nsimulate the complex vortical motions of incompressible fluids. Central to our\\nmethod is the novel incorporation of the flow-map transport equations for line\\nelements, which, in combination with a bi-directional marching scheme for flow\\nmaps, enables the high-fidelity Eulerian advection of vorticity variables. The\\nfundamental motivation is that, compared to impulse $\\\\mathbf{m}$, which has\\nbeen recently bridged with flow maps to encouraging results, vorticity\\n$\\\\boldsymbol{\\\\omega}$ promises to be preferable for its numerically stability\\nand physical interpretability. To realize the full potential of this novel\\nformulation, we develop a new Poisson solving scheme for vorticity-to-velocity\\nreconstruction that is both efficient and able to accurately handle the\\ncoupling near solid boundaries. We demonstrate the efficacy of our approach\\nwith a range of vortex simulation examples, including leapfrog vortices, vortex\\ncollisions, cavity flow, and the formation of complex vortical structures due\\nto solid-fluid interactions.\",\"PeriodicalId\":501162,\"journal\":{\"name\":\"arXiv - MATH - Numerical Analysis\",\"volume\":\"118 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Numerical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.06201\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种基于流图理论的欧拉旋涡方法,用于模拟不可压缩流体的复杂旋涡运动。我们方法的核心是新颖地加入了线元的流图传输方程,结合流图的双向行进方案,实现了涡度变量的高保真欧拉平流。其根本原因在于,与脉冲$\mathbf{m}$相比,涡度$\boldsymbol\{omega}$在数值稳定性和物理可解释性方面更胜一筹。为了充分发挥这种新颖形式的潜力,我们开发了一种新的泊松求解方案,用于涡度-速度重建,既高效又能准确处理固体边界附近的耦合。我们用一系列涡旋模拟实例证明了我们方法的有效性,包括跃迁涡旋、涡旋碰撞、空腔流以及固液相互作用形成的复杂涡旋结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Eulerian Vortex Method on Flow Maps
We present an Eulerian vortex method based on the theory of flow maps to simulate the complex vortical motions of incompressible fluids. Central to our method is the novel incorporation of the flow-map transport equations for line elements, which, in combination with a bi-directional marching scheme for flow maps, enables the high-fidelity Eulerian advection of vorticity variables. The fundamental motivation is that, compared to impulse $\mathbf{m}$, which has been recently bridged with flow maps to encouraging results, vorticity $\boldsymbol{\omega}$ promises to be preferable for its numerically stability and physical interpretability. To realize the full potential of this novel formulation, we develop a new Poisson solving scheme for vorticity-to-velocity reconstruction that is both efficient and able to accurately handle the coupling near solid boundaries. We demonstrate the efficacy of our approach with a range of vortex simulation examples, including leapfrog vortices, vortex collisions, cavity flow, and the formation of complex vortical structures due to solid-fluid interactions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信