高维结构系统的高效矩阵分解:理论与应用

Ronald Katende
{"title":"高维结构系统的高效矩阵分解:理论与应用","authors":"Ronald Katende","doi":"arxiv-2409.06321","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a novel matrix decomposition method, referred to\nas the \\( D \\)-decomposition, designed to improve computational efficiency and\nstability for solving high-dimensional linear systems. The decomposition\nfactorizes a matrix \\( A \\in \\mathbb{R}^{n \\times n} \\) into three matrices \\(\nA = PDQ \\), where \\( P \\), \\( D \\), and \\( Q \\) are structured to exploit\nsparsity, low rank, and other matrix properties. We provide rigorous proofs for\nthe existence, uniqueness, and stability of the decomposition under various\nconditions, including noise perturbations and rank constraints. The \\( D\n\\)-decomposition offers significant computational advantages, particularly for\nsparse or low-rank matrices, reducing the complexity from \\( O(n^3) \\) for\ntraditional decompositions to \\( O(n^2 k) \\) or better, depending on the\nstructure of the matrix. This method is particularly suited for large-scale\napplications in machine learning, signal processing, and data science.\nNumerical examples demonstrate the method's superior performance over\ntraditional LU and QR decompositions, particularly in the context of\ndimensionality reduction and large-scale matrix factorization.","PeriodicalId":501162,"journal":{"name":"arXiv - MATH - Numerical Analysis","volume":"118 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient Matrix Decomposition for High-Dimensional Structured Systems: Theory and Applications\",\"authors\":\"Ronald Katende\",\"doi\":\"arxiv-2409.06321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce a novel matrix decomposition method, referred to\\nas the \\\\( D \\\\)-decomposition, designed to improve computational efficiency and\\nstability for solving high-dimensional linear systems. The decomposition\\nfactorizes a matrix \\\\( A \\\\in \\\\mathbb{R}^{n \\\\times n} \\\\) into three matrices \\\\(\\nA = PDQ \\\\), where \\\\( P \\\\), \\\\( D \\\\), and \\\\( Q \\\\) are structured to exploit\\nsparsity, low rank, and other matrix properties. We provide rigorous proofs for\\nthe existence, uniqueness, and stability of the decomposition under various\\nconditions, including noise perturbations and rank constraints. The \\\\( D\\n\\\\)-decomposition offers significant computational advantages, particularly for\\nsparse or low-rank matrices, reducing the complexity from \\\\( O(n^3) \\\\) for\\ntraditional decompositions to \\\\( O(n^2 k) \\\\) or better, depending on the\\nstructure of the matrix. This method is particularly suited for large-scale\\napplications in machine learning, signal processing, and data science.\\nNumerical examples demonstrate the method's superior performance over\\ntraditional LU and QR decompositions, particularly in the context of\\ndimensionality reduction and large-scale matrix factorization.\",\"PeriodicalId\":501162,\"journal\":{\"name\":\"arXiv - MATH - Numerical Analysis\",\"volume\":\"118 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Numerical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.06321\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们介绍了一种新颖的矩阵分解方法,称为 \( D \)-分解,旨在提高求解高维线性系统的计算效率和稳定性。该分解法将矩阵 A 分解为三个矩阵 A = PDQ,其中 P、D 和 Q 的结构利用了稀疏性、低秩和其他矩阵特性。我们提供了在各种条件(包括噪声扰动和秩约束)下分解的存在性、唯一性和稳定性的严格证明。D\) 分解具有显著的计算优势,特别是对于稀疏或低秩矩阵,根据矩阵的结构,复杂度从传统分解的\( O(n^3) \)降低到\( O(n^2 k) \)或更高。数值示例证明了该方法优于传统 LU 和 QR 分解的性能,尤其是在降维和大规模矩阵因式分解方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient Matrix Decomposition for High-Dimensional Structured Systems: Theory and Applications
In this paper, we introduce a novel matrix decomposition method, referred to as the \( D \)-decomposition, designed to improve computational efficiency and stability for solving high-dimensional linear systems. The decomposition factorizes a matrix \( A \in \mathbb{R}^{n \times n} \) into three matrices \( A = PDQ \), where \( P \), \( D \), and \( Q \) are structured to exploit sparsity, low rank, and other matrix properties. We provide rigorous proofs for the existence, uniqueness, and stability of the decomposition under various conditions, including noise perturbations and rank constraints. The \( D \)-decomposition offers significant computational advantages, particularly for sparse or low-rank matrices, reducing the complexity from \( O(n^3) \) for traditional decompositions to \( O(n^2 k) \) or better, depending on the structure of the matrix. This method is particularly suited for large-scale applications in machine learning, signal processing, and data science. Numerical examples demonstrate the method's superior performance over traditional LU and QR decompositions, particularly in the context of dimensionality reduction and large-scale matrix factorization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信