{"title":"基于多尺度谱广义有限元的两级限制性加法施瓦茨预处理器,用于解决异质亥姆霍兹问题","authors":"Chupeng Ma, Christian Alber, Robert Scheichl","doi":"arxiv-2409.06533","DOIUrl":null,"url":null,"abstract":"We present and analyze a two-level restricted additive Schwarz (RAS)\npreconditioner for heterogeneous Helmholtz problems, based on a multiscale\nspectral generalized finite element method (MS-GFEM) proposed in [C. Ma, C.\nAlber, and R. Scheichl, SIAM. J. Numer. Anal., 61 (2023), pp. 1546--1584]. The\npreconditioner uses local solves with impedance boundary conditions, and a\nglobal coarse solve based on the MS-GFEM approximation space constructed from\nlocal eigenproblems. It is derived by first formulating MS-GFEM as a Richardson\niterative method, and without using an oversampling technique, reduces to the\npreconditioner recently proposed and analyzed in [Q. Hu and Z.Li, arXiv\n2402.06905]. We prove that both the Richardson iterative method and the preconditioner\nused within GMRES converge at a rate of $\\Lambda$ under some reasonable\nconditions, where $\\Lambda$ denotes the error of the underlying MS-GFEM\n\\rs{approximation}. Notably, the convergence proof of GMRES does not rely on\nthe `Elman theory'. An exponential convergence property of MS-GFEM, resulting\nfrom oversampling, ensures that only a few iterations are needed for\nconvergence with a small coarse space. Moreover, the convergence rate $\\Lambda$\nis not only independent of the fine-mesh size $h$ and the number of subdomains,\nbut decays with increasing wavenumber $k$. In particular, in the\nconstant-coefficient case, with $h\\sim k^{-1-\\gamma}$ for some $\\gamma\\in\n(0,1]$, it holds that $\\Lambda \\sim k^{-1+\\frac{\\gamma}{2}}$.","PeriodicalId":501162,"journal":{"name":"arXiv - MATH - Numerical Analysis","volume":"118 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two-level Restricted Additive Schwarz preconditioner based on Multiscale Spectral Generalized FEM for Heterogeneous Helmholtz Problems\",\"authors\":\"Chupeng Ma, Christian Alber, Robert Scheichl\",\"doi\":\"arxiv-2409.06533\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present and analyze a two-level restricted additive Schwarz (RAS)\\npreconditioner for heterogeneous Helmholtz problems, based on a multiscale\\nspectral generalized finite element method (MS-GFEM) proposed in [C. Ma, C.\\nAlber, and R. Scheichl, SIAM. J. Numer. Anal., 61 (2023), pp. 1546--1584]. The\\npreconditioner uses local solves with impedance boundary conditions, and a\\nglobal coarse solve based on the MS-GFEM approximation space constructed from\\nlocal eigenproblems. It is derived by first formulating MS-GFEM as a Richardson\\niterative method, and without using an oversampling technique, reduces to the\\npreconditioner recently proposed and analyzed in [Q. Hu and Z.Li, arXiv\\n2402.06905]. We prove that both the Richardson iterative method and the preconditioner\\nused within GMRES converge at a rate of $\\\\Lambda$ under some reasonable\\nconditions, where $\\\\Lambda$ denotes the error of the underlying MS-GFEM\\n\\\\rs{approximation}. Notably, the convergence proof of GMRES does not rely on\\nthe `Elman theory'. An exponential convergence property of MS-GFEM, resulting\\nfrom oversampling, ensures that only a few iterations are needed for\\nconvergence with a small coarse space. Moreover, the convergence rate $\\\\Lambda$\\nis not only independent of the fine-mesh size $h$ and the number of subdomains,\\nbut decays with increasing wavenumber $k$. In particular, in the\\nconstant-coefficient case, with $h\\\\sim k^{-1-\\\\gamma}$ for some $\\\\gamma\\\\in\\n(0,1]$, it holds that $\\\\Lambda \\\\sim k^{-1+\\\\frac{\\\\gamma}{2}}$.\",\"PeriodicalId\":501162,\"journal\":{\"name\":\"arXiv - MATH - Numerical Analysis\",\"volume\":\"118 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Numerical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.06533\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06533","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们介绍并分析了基于多尺度谱广义有限元法(MS-GFEM)的异质亥姆霍兹(Helmholtz)问题的两级受限加法施瓦茨(RAS)预处理器 [C. Ma, C. Alber and R. Scheichl, SIAM.Ma, C.Alber, and R. Scheichl, SIAM.J. Numer.Anal., 61 (2023), pp.]该预处理使用带有阻抗边界条件的局部求解,以及基于局部特征问题构建的 MS-GFEM 近似空间的全局粗求解。它首先将 MS-GFEM 表述为 Richardson 迭代法,在不使用超采样技术的情况下,简化为最近在 [Q. Hu and Z. Li, arXiv2402.06905] 中提出并分析的预处理方法。我们证明,在一些合理的条件下,Richardson 迭代方法和 GMRES 中使用的预处理都能以 $\Lambda$ 的速度收敛,其中 $\Lambda$ 表示底层 MS-GFEM (rs{approximation})的误差。值得注意的是,GMRES 的收敛证明并不依赖于 "埃尔曼理论"。超采样产生的 MS-GFEM 指数收敛特性确保了只需少量迭代就能在较小的粗空间内实现收敛。此外,收敛速率 $\Lambda$ 不仅与细网格大小 $h$ 和子域数量无关,而且随着波长数 $k$ 的增加而衰减。特别是,在实体-系数情况下,当某个 $\gamma\in(0,1]$ 为 $h\sim k^{-1-\gamma}$ 时,$\Lambda \sim k^{-1+\frac{\gamma}{2}}$ 是成立的。
Two-level Restricted Additive Schwarz preconditioner based on Multiscale Spectral Generalized FEM for Heterogeneous Helmholtz Problems
We present and analyze a two-level restricted additive Schwarz (RAS)
preconditioner for heterogeneous Helmholtz problems, based on a multiscale
spectral generalized finite element method (MS-GFEM) proposed in [C. Ma, C.
Alber, and R. Scheichl, SIAM. J. Numer. Anal., 61 (2023), pp. 1546--1584]. The
preconditioner uses local solves with impedance boundary conditions, and a
global coarse solve based on the MS-GFEM approximation space constructed from
local eigenproblems. It is derived by first formulating MS-GFEM as a Richardson
iterative method, and without using an oversampling technique, reduces to the
preconditioner recently proposed and analyzed in [Q. Hu and Z.Li, arXiv
2402.06905]. We prove that both the Richardson iterative method and the preconditioner
used within GMRES converge at a rate of $\Lambda$ under some reasonable
conditions, where $\Lambda$ denotes the error of the underlying MS-GFEM
\rs{approximation}. Notably, the convergence proof of GMRES does not rely on
the `Elman theory'. An exponential convergence property of MS-GFEM, resulting
from oversampling, ensures that only a few iterations are needed for
convergence with a small coarse space. Moreover, the convergence rate $\Lambda$
is not only independent of the fine-mesh size $h$ and the number of subdomains,
but decays with increasing wavenumber $k$. In particular, in the
constant-coefficient case, with $h\sim k^{-1-\gamma}$ for some $\gamma\in
(0,1]$, it holds that $\Lambda \sim k^{-1+\frac{\gamma}{2}}$.