弱 Galerkin 有限元方法对奇异扰动双谐波问题的各向异性误差分析

Aayushman Raina, Srinivasan Natesan, Şuayip Toprakseven
{"title":"弱 Galerkin 有限元方法对奇异扰动双谐波问题的各向异性误差分析","authors":"Aayushman Raina, Srinivasan Natesan, Şuayip Toprakseven","doi":"arxiv-2409.07217","DOIUrl":null,"url":null,"abstract":"We consider the Weak Galerkin finite element approximation of the Singularly\nPerturbed Biharmonic elliptic problem on a unit square domain with clamped\nboundary conditions. Shishkin mesh is used for domain discretization as the\nsolution exhibits boundary layers near the domain boundary. Error estimates in\nthe equivalent $H^{2}-$ norm have been established and the uniform convergence\nof the proposed method has been proved. Numerical examples are presented\ncorroborating our theoretical findings.","PeriodicalId":501162,"journal":{"name":"arXiv - MATH - Numerical Analysis","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anisotropic Error Analysis of Weak Galerkin finite element method for Singularly Perturbed Biharmonic Problems\",\"authors\":\"Aayushman Raina, Srinivasan Natesan, Şuayip Toprakseven\",\"doi\":\"arxiv-2409.07217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the Weak Galerkin finite element approximation of the Singularly\\nPerturbed Biharmonic elliptic problem on a unit square domain with clamped\\nboundary conditions. Shishkin mesh is used for domain discretization as the\\nsolution exhibits boundary layers near the domain boundary. Error estimates in\\nthe equivalent $H^{2}-$ norm have been established and the uniform convergence\\nof the proposed method has been proved. Numerical examples are presented\\ncorroborating our theoretical findings.\",\"PeriodicalId\":501162,\"journal\":{\"name\":\"arXiv - MATH - Numerical Analysis\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Numerical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07217\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑在一个具有箝位边界条件的单位正方形域上对奇异扰动比谐椭圆问题进行弱 Galerkin 有限元近似。由于解在域边界附近会出现边界层,因此采用 Shishkin 网格进行域离散化。建立了等效 $H^{2}-$ 准则的误差估计,并证明了所提方法的均匀收敛性。给出的数值示例证实了我们的理论发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Anisotropic Error Analysis of Weak Galerkin finite element method for Singularly Perturbed Biharmonic Problems
We consider the Weak Galerkin finite element approximation of the Singularly Perturbed Biharmonic elliptic problem on a unit square domain with clamped boundary conditions. Shishkin mesh is used for domain discretization as the solution exhibits boundary layers near the domain boundary. Error estimates in the equivalent $H^{2}-$ norm have been established and the uniform convergence of the proposed method has been proved. Numerical examples are presented corroborating our theoretical findings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信