用于一般网格上时变不可压缩纳维-斯托克斯方程的雷诺稳态和压力稳健混合高阶方法

Daniel Castanon Quiroz, Daniele A. Di Pietro
{"title":"用于一般网格上时变不可压缩纳维-斯托克斯方程的雷诺稳态和压力稳健混合高阶方法","authors":"Daniel Castanon Quiroz, Daniele A. Di Pietro","doi":"arxiv-2409.07037","DOIUrl":null,"url":null,"abstract":"In this work we develop and analyze a Reynolds-semi-robust and\npressure-robust Hybrid High-Order (HHO) discretization of the incompressible\nNavier--Stokes equations. Reynolds-semi-robustness refers to the fact that,\nunder suitable regularity assumptions, the right-hand side of the velocity\nerror estimate does not depend on the inverse of the viscosity. This property\nis obtained here through a penalty term which involves a subtle projection of\nthe convective term on a subgrid space constructed element by element. The\nestimated convergence order for the $L^\\infty(L^2)$- and\n$L^2(\\text{energy})$-norm of the velocity is $h^{k+\\frac12}$, which matches the\nbest results for continuous and discontinuous Galerkin methods and corresponds\nto the one expected for HHO methods in convection-dominated regimes.\nTwo-dimensional numerical results on a variety of polygonal meshes complete the\nexposition.","PeriodicalId":501162,"journal":{"name":"arXiv - MATH - Numerical Analysis","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Reynolds-semi-robust and pressure robust Hybrid High-Order method for the time dependent incompressible Navier--Stokes equations on general meshes\",\"authors\":\"Daniel Castanon Quiroz, Daniele A. Di Pietro\",\"doi\":\"arxiv-2409.07037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we develop and analyze a Reynolds-semi-robust and\\npressure-robust Hybrid High-Order (HHO) discretization of the incompressible\\nNavier--Stokes equations. Reynolds-semi-robustness refers to the fact that,\\nunder suitable regularity assumptions, the right-hand side of the velocity\\nerror estimate does not depend on the inverse of the viscosity. This property\\nis obtained here through a penalty term which involves a subtle projection of\\nthe convective term on a subgrid space constructed element by element. The\\nestimated convergence order for the $L^\\\\infty(L^2)$- and\\n$L^2(\\\\text{energy})$-norm of the velocity is $h^{k+\\\\frac12}$, which matches the\\nbest results for continuous and discontinuous Galerkin methods and corresponds\\nto the one expected for HHO methods in convection-dominated regimes.\\nTwo-dimensional numerical results on a variety of polygonal meshes complete the\\nexposition.\",\"PeriodicalId\":501162,\"journal\":{\"name\":\"arXiv - MATH - Numerical Analysis\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Numerical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们开发并分析了不可压缩纳维尔-斯托克斯方程的雷诺稳态和压力稳态混合高阶(HHO)离散法。雷诺半稳健性是指在适当的正则性假设下,速度误差估计的右侧不依赖于粘度的倒数。在这里,这一特性是通过惩罚项获得的,惩罚项涉及在逐元素构建的子网格空间上对对流项的微妙投影。速度的$L^\infty(L^2)$-和$L^2(\text{energy})$正态的估计收敛阶数为$h^{k+\frac12}$,这与连续和非连续 Galerkin 方法的最佳结果相匹配,并与对流主导机制中 HHO 方法的预期收敛阶数一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Reynolds-semi-robust and pressure robust Hybrid High-Order method for the time dependent incompressible Navier--Stokes equations on general meshes
In this work we develop and analyze a Reynolds-semi-robust and pressure-robust Hybrid High-Order (HHO) discretization of the incompressible Navier--Stokes equations. Reynolds-semi-robustness refers to the fact that, under suitable regularity assumptions, the right-hand side of the velocity error estimate does not depend on the inverse of the viscosity. This property is obtained here through a penalty term which involves a subtle projection of the convective term on a subgrid space constructed element by element. The estimated convergence order for the $L^\infty(L^2)$- and $L^2(\text{energy})$-norm of the velocity is $h^{k+\frac12}$, which matches the best results for continuous and discontinuous Galerkin methods and corresponds to the one expected for HHO methods in convection-dominated regimes. Two-dimensional numerical results on a variety of polygonal meshes complete the exposition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信