静态福克--普朗克--科尔莫戈罗夫方程的有限元近似与周期数值同质化的应用

Timo Sprekeler, Endre Süli, Zhiwen Zhang
{"title":"静态福克--普朗克--科尔莫戈罗夫方程的有限元近似与周期数值同质化的应用","authors":"Timo Sprekeler, Endre Süli, Zhiwen Zhang","doi":"arxiv-2409.07371","DOIUrl":null,"url":null,"abstract":"We propose and rigorously analyze a finite element method for the\napproximation of stationary Fokker--Planck--Kolmogorov (FPK) equations subject\nto periodic boundary conditions in two settings: one with weakly differentiable\ncoefficients, and one with merely essentially bounded measurable coefficients\nunder a Cordes-type condition. These problems arise as governing equations for\nthe invariant measure in the homogenization of nondivergence-form equations\nwith large drifts. In particular, the Cordes setting guarantees the existence\nand uniqueness of a square-integrable invariant measure. We then suggest and\nrigorously analyze an approximation scheme for the effective diffusion matrix\nin both settings, based on the finite element scheme for stationary FPK\nproblems developed in the first part. Finally, we demonstrate the performance\nof the methods through numerical experiments.","PeriodicalId":501162,"journal":{"name":"arXiv - MATH - Numerical Analysis","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finite element approximation of stationary Fokker--Planck--Kolmogorov equations with application to periodic numerical homogenization\",\"authors\":\"Timo Sprekeler, Endre Süli, Zhiwen Zhang\",\"doi\":\"arxiv-2409.07371\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose and rigorously analyze a finite element method for the\\napproximation of stationary Fokker--Planck--Kolmogorov (FPK) equations subject\\nto periodic boundary conditions in two settings: one with weakly differentiable\\ncoefficients, and one with merely essentially bounded measurable coefficients\\nunder a Cordes-type condition. These problems arise as governing equations for\\nthe invariant measure in the homogenization of nondivergence-form equations\\nwith large drifts. In particular, the Cordes setting guarantees the existence\\nand uniqueness of a square-integrable invariant measure. We then suggest and\\nrigorously analyze an approximation scheme for the effective diffusion matrix\\nin both settings, based on the finite element scheme for stationary FPK\\nproblems developed in the first part. Finally, we demonstrate the performance\\nof the methods through numerical experiments.\",\"PeriodicalId\":501162,\"journal\":{\"name\":\"arXiv - MATH - Numerical Analysis\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Numerical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07371\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出并严格分析了一种有限元方法,用于在两种情况下逼近受周期性边界条件限制的静态福克-普朗克-科尔莫哥罗夫(FPK)方程:一种是系数弱可微的;另一种是在科尔德斯类型条件下系数仅为基本有界可测的。这些问题是在具有大漂移的非发散形式方程的均质化中作为不变量的支配方程出现的。特别是,Cordes 设置保证了平方可积分不变量的存在性和唯一性。然后,我们以第一部分中开发的静态 FPK 问题有限元方案为基础,提出并认真分析了这两种情况下有效扩散矩阵的近似方案。最后,我们通过数值实验证明了这些方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finite element approximation of stationary Fokker--Planck--Kolmogorov equations with application to periodic numerical homogenization
We propose and rigorously analyze a finite element method for the approximation of stationary Fokker--Planck--Kolmogorov (FPK) equations subject to periodic boundary conditions in two settings: one with weakly differentiable coefficients, and one with merely essentially bounded measurable coefficients under a Cordes-type condition. These problems arise as governing equations for the invariant measure in the homogenization of nondivergence-form equations with large drifts. In particular, the Cordes setting guarantees the existence and uniqueness of a square-integrable invariant measure. We then suggest and rigorously analyze an approximation scheme for the effective diffusion matrix in both settings, based on the finite element scheme for stationary FPK problems developed in the first part. Finally, we demonstrate the performance of the methods through numerical experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信