均匀磁场中基于具有罗森-莫尔斯势能的间隙石墨烯的大质量狄拉克粒子

A. Kalani, Alireza Amani, M. A. Ramzanpour
{"title":"均匀磁场中基于具有罗森-莫尔斯势能的间隙石墨烯的大质量狄拉克粒子","authors":"A. Kalani, Alireza Amani, M. A. Ramzanpour","doi":"arxiv-2409.00234","DOIUrl":null,"url":null,"abstract":"We explore the gapped graphene structure in the two-dimensional plane in the\npresence of the Rosen-Morse potential and an external uniform magnetic field.\nIn order to describe the corresponding structure, we consider the propagation\nof electrons in graphene as relativistic fermion quasi-particles, and analyze\nit by the wave functions of two-component spinors with pseudo-spin symmetry\nusing the Dirac equation. Next, to solve and analyze the Dirac equation, we\nobtain the eigenvalues and eigenvectors using the Legendre differential\nequation. After that, we obtain the bounded states of energy depending on the\ncoefficients of Rosen-Morse and magnetic potentials in terms of quantum numbers\nof principal \\(n\\) and spin-orbit \\(k\\). Then, the values of the energy\nspectrum for the ground state and the first excited state are calculated, and\nthe wave functions and the corresponding probabilities are plotted in terms of\ncoordinates $r$. In what follows, we explore the band structure of gapped\ngraphene by the modified dispersion relation and write it in terms of the\ntwo-dimensional wave vectors $K_x$ and $K_y$. Finally, the energy bands are\nplotted in terms of the wave vectors $K_x$ and $K_y$ with and without the\nmagnetic term.","PeriodicalId":501211,"journal":{"name":"arXiv - PHYS - Other Condensed Matter","volume":"390 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Massive Dirac particles based on gapped graphene with Rosen-Morse potential in a uniform magnetic field\",\"authors\":\"A. Kalani, Alireza Amani, M. A. Ramzanpour\",\"doi\":\"arxiv-2409.00234\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We explore the gapped graphene structure in the two-dimensional plane in the\\npresence of the Rosen-Morse potential and an external uniform magnetic field.\\nIn order to describe the corresponding structure, we consider the propagation\\nof electrons in graphene as relativistic fermion quasi-particles, and analyze\\nit by the wave functions of two-component spinors with pseudo-spin symmetry\\nusing the Dirac equation. Next, to solve and analyze the Dirac equation, we\\nobtain the eigenvalues and eigenvectors using the Legendre differential\\nequation. After that, we obtain the bounded states of energy depending on the\\ncoefficients of Rosen-Morse and magnetic potentials in terms of quantum numbers\\nof principal \\\\(n\\\\) and spin-orbit \\\\(k\\\\). Then, the values of the energy\\nspectrum for the ground state and the first excited state are calculated, and\\nthe wave functions and the corresponding probabilities are plotted in terms of\\ncoordinates $r$. In what follows, we explore the band structure of gapped\\ngraphene by the modified dispersion relation and write it in terms of the\\ntwo-dimensional wave vectors $K_x$ and $K_y$. Finally, the energy bands are\\nplotted in terms of the wave vectors $K_x$ and $K_y$ with and without the\\nmagnetic term.\",\"PeriodicalId\":501211,\"journal\":{\"name\":\"arXiv - PHYS - Other Condensed Matter\",\"volume\":\"390 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Other Condensed Matter\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.00234\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Other Condensed Matter","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.00234","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了描述相应的结构,我们将电子在石墨烯中的传播视为相对论费米子准粒子,并通过具有伪自旋对称性的双分量自旋体的波函数,利用狄拉克方程对其进行分析。接下来,为了求解和分析狄拉克方程,我们利用 Legendre 微分方程得到了特征值和特征向量。之后,我们用主量子数和自旋轨道量子数得到了取决于罗森-莫尔斯系数和磁势的能量有界态。然后,计算基态和第一激发态的能谱值,并用坐标 $r$ 绘制波函数和相应的概率。接下来,我们通过修正的色散关系来探索间隙石墨烯的能带结构,并用二维波矢量 $K_x$ 和 $K_y$ 来表示。最后,我们用带磁性和不带磁性的波矢量 $K_x$ 和 $K_y$ 绘制了能带图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Massive Dirac particles based on gapped graphene with Rosen-Morse potential in a uniform magnetic field
We explore the gapped graphene structure in the two-dimensional plane in the presence of the Rosen-Morse potential and an external uniform magnetic field. In order to describe the corresponding structure, we consider the propagation of electrons in graphene as relativistic fermion quasi-particles, and analyze it by the wave functions of two-component spinors with pseudo-spin symmetry using the Dirac equation. Next, to solve and analyze the Dirac equation, we obtain the eigenvalues and eigenvectors using the Legendre differential equation. After that, we obtain the bounded states of energy depending on the coefficients of Rosen-Morse and magnetic potentials in terms of quantum numbers of principal \(n\) and spin-orbit \(k\). Then, the values of the energy spectrum for the ground state and the first excited state are calculated, and the wave functions and the corresponding probabilities are plotted in terms of coordinates $r$. In what follows, we explore the band structure of gapped graphene by the modified dispersion relation and write it in terms of the two-dimensional wave vectors $K_x$ and $K_y$. Finally, the energy bands are plotted in terms of the wave vectors $K_x$ and $K_y$ with and without the magnetic term.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信