{"title":"用于地面噪声评估的列车振动频谱统计特性","authors":"Dominik Duschlbauer, Michael Allan, James Nelson","doi":"10.1007/s40857-024-00334-y","DOIUrl":null,"url":null,"abstract":"<p>The train vibration levels at a receiver are primarily governed by the trackform and its offset from the tracks. For a given trackform and offset, however, there can still be a wide variation in vibration generated by trains depending on the wheel and rail surface conditions, composition of the fleet and train speeds. In Australia, policies for the assessment of ground-borne noise and vibration are generally focused on the 95th percentile of train pass-bys. The use of this statistical descriptor is equivalent to a 5% exceedance level, i.e. vibration from one in twenty trains can be expected to be greater. This paper analyses four vibration datasets measured in Australasia. Three sets were measured on busy metropolitan train networks with direct fixation tracks in tunnels, and one dataset was measured on a ballasted surface track. The study focuses on the calculation of 95th percentiles and the effect of dataset size on the resulting 95th percentile vibration levels. Statistical error bands are calculated as a function of the number of consecutive pass-bys used in the dataset which allows for estimating the potential risks associated with working with small datasets. The effect of different approaches for calculating the percentiles is also discussed.</p>","PeriodicalId":50909,"journal":{"name":"Acoustics Australia","volume":"32 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Statistical Properties of Train Vibration Spectra for Ground-Borne Noise Assessments\",\"authors\":\"Dominik Duschlbauer, Michael Allan, James Nelson\",\"doi\":\"10.1007/s40857-024-00334-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The train vibration levels at a receiver are primarily governed by the trackform and its offset from the tracks. For a given trackform and offset, however, there can still be a wide variation in vibration generated by trains depending on the wheel and rail surface conditions, composition of the fleet and train speeds. In Australia, policies for the assessment of ground-borne noise and vibration are generally focused on the 95th percentile of train pass-bys. The use of this statistical descriptor is equivalent to a 5% exceedance level, i.e. vibration from one in twenty trains can be expected to be greater. This paper analyses four vibration datasets measured in Australasia. Three sets were measured on busy metropolitan train networks with direct fixation tracks in tunnels, and one dataset was measured on a ballasted surface track. The study focuses on the calculation of 95th percentiles and the effect of dataset size on the resulting 95th percentile vibration levels. Statistical error bands are calculated as a function of the number of consecutive pass-bys used in the dataset which allows for estimating the potential risks associated with working with small datasets. The effect of different approaches for calculating the percentiles is also discussed.</p>\",\"PeriodicalId\":50909,\"journal\":{\"name\":\"Acoustics Australia\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acoustics Australia\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1007/s40857-024-00334-y\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acoustics Australia","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s40857-024-00334-y","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
Statistical Properties of Train Vibration Spectra for Ground-Borne Noise Assessments
The train vibration levels at a receiver are primarily governed by the trackform and its offset from the tracks. For a given trackform and offset, however, there can still be a wide variation in vibration generated by trains depending on the wheel and rail surface conditions, composition of the fleet and train speeds. In Australia, policies for the assessment of ground-borne noise and vibration are generally focused on the 95th percentile of train pass-bys. The use of this statistical descriptor is equivalent to a 5% exceedance level, i.e. vibration from one in twenty trains can be expected to be greater. This paper analyses four vibration datasets measured in Australasia. Three sets were measured on busy metropolitan train networks with direct fixation tracks in tunnels, and one dataset was measured on a ballasted surface track. The study focuses on the calculation of 95th percentiles and the effect of dataset size on the resulting 95th percentile vibration levels. Statistical error bands are calculated as a function of the number of consecutive pass-bys used in the dataset which allows for estimating the potential risks associated with working with small datasets. The effect of different approaches for calculating the percentiles is also discussed.
期刊介绍:
Acoustics Australia, the journal of the Australian Acoustical Society, has been publishing high quality research and technical papers in all areas of acoustics since commencement in 1972. The target audience for the journal includes both researchers and practitioners. It aims to publish papers and technical notes that are relevant to current acoustics and of interest to members of the Society. These include but are not limited to: Architectural and Building Acoustics, Environmental Noise, Underwater Acoustics, Engineering Noise and Vibration Control, Occupational Noise Management, Hearing, Musical Acoustics.