Manel Jerbi, Zaineb Chelly Dagdia, Slim Bechikh, Lamjed Ben Said
{"title":"用于移动网络安全威胁检测的认知启发式三向决策和双级进化优化:安卓恶意软件案例研究","authors":"Manel Jerbi, Zaineb Chelly Dagdia, Slim Bechikh, Lamjed Ben Said","doi":"10.1007/s12559-024-10337-6","DOIUrl":null,"url":null,"abstract":"<p>Malicious apps use a variety of methods to spread infections, take over computers and/or IoT devices, and steal sensitive data. Several detection techniques have been proposed to counter these attacks. Despite the promising results of recent malware detection strategies, particularly those addressing evolving threats, inefficiencies persist due to potential inconsistency in both the generated malicious malware and the pre-specified detection rules, as well as their crisp decision-making process. In this paper, we propose to address these issues by (i) considering the detection rules generation process as a Bi-Level Optimization Problem, where a competition between two levels (an upper level and a lower one) produces a set of effective detection rules capable of detecting new variants of existing and even unseen malware patterns. This bi-level strategy is subtly inspired by natural evolutionary processes, where organisms adapt and evolve through continuous interaction and competition within their environments. Furthermore, (ii) we leverage the fundamentals of Rough Set Theory, which reflects cognitive decision-making processes, to assess the true nature of artificially generated malicious patterns. This involves retaining only the consistent malicious patterns and detection rules and categorizing these rules into a three-way decision framework comprising accept, abstain, and reject options. Our novel malware detection technique outperforms several state-of-the-art methods on various Android malware datasets, accurately predicting new apps with a 96.76% accuracy rate. Moreover, our approach is versatile and effective in detecting patterns applicable to a variety of cybersecurity threats.</p>","PeriodicalId":51243,"journal":{"name":"Cognitive Computation","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cognitively Inspired Three-Way Decision Making and Bi-Level Evolutionary Optimization for Mobile Cybersecurity Threats Detection: A Case Study on Android Malware\",\"authors\":\"Manel Jerbi, Zaineb Chelly Dagdia, Slim Bechikh, Lamjed Ben Said\",\"doi\":\"10.1007/s12559-024-10337-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Malicious apps use a variety of methods to spread infections, take over computers and/or IoT devices, and steal sensitive data. Several detection techniques have been proposed to counter these attacks. Despite the promising results of recent malware detection strategies, particularly those addressing evolving threats, inefficiencies persist due to potential inconsistency in both the generated malicious malware and the pre-specified detection rules, as well as their crisp decision-making process. In this paper, we propose to address these issues by (i) considering the detection rules generation process as a Bi-Level Optimization Problem, where a competition between two levels (an upper level and a lower one) produces a set of effective detection rules capable of detecting new variants of existing and even unseen malware patterns. This bi-level strategy is subtly inspired by natural evolutionary processes, where organisms adapt and evolve through continuous interaction and competition within their environments. Furthermore, (ii) we leverage the fundamentals of Rough Set Theory, which reflects cognitive decision-making processes, to assess the true nature of artificially generated malicious patterns. This involves retaining only the consistent malicious patterns and detection rules and categorizing these rules into a three-way decision framework comprising accept, abstain, and reject options. Our novel malware detection technique outperforms several state-of-the-art methods on various Android malware datasets, accurately predicting new apps with a 96.76% accuracy rate. Moreover, our approach is versatile and effective in detecting patterns applicable to a variety of cybersecurity threats.</p>\",\"PeriodicalId\":51243,\"journal\":{\"name\":\"Cognitive Computation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognitive Computation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s12559-024-10337-6\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Computation","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s12559-024-10337-6","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Cognitively Inspired Three-Way Decision Making and Bi-Level Evolutionary Optimization for Mobile Cybersecurity Threats Detection: A Case Study on Android Malware
Malicious apps use a variety of methods to spread infections, take over computers and/or IoT devices, and steal sensitive data. Several detection techniques have been proposed to counter these attacks. Despite the promising results of recent malware detection strategies, particularly those addressing evolving threats, inefficiencies persist due to potential inconsistency in both the generated malicious malware and the pre-specified detection rules, as well as their crisp decision-making process. In this paper, we propose to address these issues by (i) considering the detection rules generation process as a Bi-Level Optimization Problem, where a competition between two levels (an upper level and a lower one) produces a set of effective detection rules capable of detecting new variants of existing and even unseen malware patterns. This bi-level strategy is subtly inspired by natural evolutionary processes, where organisms adapt and evolve through continuous interaction and competition within their environments. Furthermore, (ii) we leverage the fundamentals of Rough Set Theory, which reflects cognitive decision-making processes, to assess the true nature of artificially generated malicious patterns. This involves retaining only the consistent malicious patterns and detection rules and categorizing these rules into a three-way decision framework comprising accept, abstain, and reject options. Our novel malware detection technique outperforms several state-of-the-art methods on various Android malware datasets, accurately predicting new apps with a 96.76% accuracy rate. Moreover, our approach is versatile and effective in detecting patterns applicable to a variety of cybersecurity threats.
期刊介绍:
Cognitive Computation is an international, peer-reviewed, interdisciplinary journal that publishes cutting-edge articles describing original basic and applied work involving biologically-inspired computational accounts of all aspects of natural and artificial cognitive systems. It provides a new platform for the dissemination of research, current practices and future trends in the emerging discipline of cognitive computation that bridges the gap between life sciences, social sciences, engineering, physical and mathematical sciences, and humanities.