ResUbiNet:用于泛素化位点预测的新型深度学习架构

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Zixin Duan, Yafeng Liang, Xin Xiu, Wenjie Ma, Hu Mei
{"title":"ResUbiNet:用于泛素化位点预测的新型深度学习架构","authors":"Zixin Duan, Yafeng Liang, Xin Xiu, Wenjie Ma, Hu Mei","doi":"10.2174/0113892029331751240820111158","DOIUrl":null,"url":null,"abstract":"Introduction: Ubiquitination, a unique post-translational modification, plays a cardinal role in diverse cellular functions such as protein degradation, signal transduction, DNA repair, and regulation of cell cycle. Method: Thus, accurate prediction of potential ubiquitination sites is an urgent requirement for exploring the ubiquitination mechanism as well as the disease pathogenesis associated with ubiquitination processes. Results: This study introduces a novel deep learning architecture, ResUbiNet, which utilized a protein language model (ProtTrans), amino acid properties, and BLOSUM62 matrix for sequence embedding and multiple state-of-the-art architectural components, i.e., transformer, multi-kernel convolution, residual connection, and squeeze-and-excitation for feature extractions. Conclusion: The results of cross-validation and external tests showed that the ResUbiNet model achieved better prediction performances in comparison with the available hCKSAAP_UbSite, RUBI, MDCapsUbi, and MusiteDeep models.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ResUbiNet: A Novel Deep Learning Architecture for Ubiquitination Site Prediction\",\"authors\":\"Zixin Duan, Yafeng Liang, Xin Xiu, Wenjie Ma, Hu Mei\",\"doi\":\"10.2174/0113892029331751240820111158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduction: Ubiquitination, a unique post-translational modification, plays a cardinal role in diverse cellular functions such as protein degradation, signal transduction, DNA repair, and regulation of cell cycle. Method: Thus, accurate prediction of potential ubiquitination sites is an urgent requirement for exploring the ubiquitination mechanism as well as the disease pathogenesis associated with ubiquitination processes. Results: This study introduces a novel deep learning architecture, ResUbiNet, which utilized a protein language model (ProtTrans), amino acid properties, and BLOSUM62 matrix for sequence embedding and multiple state-of-the-art architectural components, i.e., transformer, multi-kernel convolution, residual connection, and squeeze-and-excitation for feature extractions. Conclusion: The results of cross-validation and external tests showed that the ResUbiNet model achieved better prediction performances in comparison with the available hCKSAAP_UbSite, RUBI, MDCapsUbi, and MusiteDeep models.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.2174/0113892029331751240820111158\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2174/0113892029331751240820111158","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

简介泛素化是一种独特的翻译后修饰,在蛋白质降解、信号转导、DNA 修复和细胞周期调控等多种细胞功能中发挥着重要作用。方法:因此,准确预测潜在泛素化位点是探索泛素化机制以及与泛素化过程相关的疾病发病机制的迫切需要。研究结果本研究介绍了一种新型深度学习架构--ResUbiNet,该架构利用蛋白质语言模型(ProtTrans)、氨基酸属性和 BLOSUM62 矩阵进行序列嵌入,并利用多种最先进的架构组件(即变压器、多核卷积、残差连接和挤压-激发)进行特征提取。结论交叉验证和外部测试的结果表明,与现有的 hCKSAAP_UbSite、RUBI、MDCapsUbi 和 MusiteDeep 模型相比,ResUbiNet 模型取得了更好的预测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ResUbiNet: A Novel Deep Learning Architecture for Ubiquitination Site Prediction
Introduction: Ubiquitination, a unique post-translational modification, plays a cardinal role in diverse cellular functions such as protein degradation, signal transduction, DNA repair, and regulation of cell cycle. Method: Thus, accurate prediction of potential ubiquitination sites is an urgent requirement for exploring the ubiquitination mechanism as well as the disease pathogenesis associated with ubiquitination processes. Results: This study introduces a novel deep learning architecture, ResUbiNet, which utilized a protein language model (ProtTrans), amino acid properties, and BLOSUM62 matrix for sequence embedding and multiple state-of-the-art architectural components, i.e., transformer, multi-kernel convolution, residual connection, and squeeze-and-excitation for feature extractions. Conclusion: The results of cross-validation and external tests showed that the ResUbiNet model achieved better prediction performances in comparison with the available hCKSAAP_UbSite, RUBI, MDCapsUbi, and MusiteDeep models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信