{"title":"自然光和 LED 光条件下珊瑚 Acropora digitifera 蛋白素基因的昼夜表达模式","authors":"Zongyan Shi, Ee Suan Tan, Akihiro Takemura","doi":"10.1007/s00338-024-02558-w","DOIUrl":null,"url":null,"abstract":"<p>Photoreception is essential to coral growth, reproduction, and stress responses. Thus far, opsin-based photoreception and potential photoadaptation in Scleractinian corals remains unclear. This study used natural and light-emitting diode (LED) lighting to investigate how <i>Acropora digitifera</i>, which is adapted to shallow-water environments, responds to day–night conditions. We successfully cloned three opsin genes (<i>Adopsin1, Adopsin2</i>, and <i>Adopsin3</i>)<i>. Adopsin1</i> and <i>Adopsin2</i> clustered with the Cnidopsins, whereas <i>Adopsin3</i> clustered with the anthozoan-specific opsin I group. In situ hybridization showed positive signals of these genes in coral endodermal and ectodermal layers. When <i>A. digitifera</i> branches were reared under a day–night cycle with natural light, a day-high and night-low pattern was observed in the transcript levels of <i>Adopsin1</i> and <i>Adopsin3.</i> Genes related to calcification [plasma membrane calcium transporting ATPase 2 (<i>PMCA</i>)] and oxygen homeostasis regulation [hypoxia-inducible factor 1 alpha (<i>HIF1α</i>)] showed similar patterns. Rearing of branches under a day–night cycle (photoperiod = 12:12, 26.5–29.3 μmol s<sup>−1</sup> m<sup>−2</sup>) with red (<i>λ</i><sub>max</sub> = 628 nm), but not blue (464 nm) or green (519 nm) LED lighting led to increases in transcript levels of <i>Adopsin1</i> and <i>Adopsin3</i> during photophase. The transcript levels of carbonic anhydrase, <i>PMCA</i>, <i>HIFα</i>, and sodium-glucose cotransporter were significantly higher during photophase than during scotophase. Furthermore, <i>Adopsin3</i> upregulation occurred within 4 h of exposure to a red LED light at night. These results suggest that <i>A. digitifera</i> can responding to long wavelengths of light, which play a crucial role in the photophysiology of the coral host. The capacity to perceive red light provides advantages in physiological adaptation and ecological niche occupation by <i>A. digitifera</i> in shallow waters.</p>","PeriodicalId":10821,"journal":{"name":"Coral Reefs","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Day–night expression patterns of opsin genes in the coral Acropora digitifera under natural and LED light conditions\",\"authors\":\"Zongyan Shi, Ee Suan Tan, Akihiro Takemura\",\"doi\":\"10.1007/s00338-024-02558-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Photoreception is essential to coral growth, reproduction, and stress responses. Thus far, opsin-based photoreception and potential photoadaptation in Scleractinian corals remains unclear. This study used natural and light-emitting diode (LED) lighting to investigate how <i>Acropora digitifera</i>, which is adapted to shallow-water environments, responds to day–night conditions. We successfully cloned three opsin genes (<i>Adopsin1, Adopsin2</i>, and <i>Adopsin3</i>)<i>. Adopsin1</i> and <i>Adopsin2</i> clustered with the Cnidopsins, whereas <i>Adopsin3</i> clustered with the anthozoan-specific opsin I group. In situ hybridization showed positive signals of these genes in coral endodermal and ectodermal layers. When <i>A. digitifera</i> branches were reared under a day–night cycle with natural light, a day-high and night-low pattern was observed in the transcript levels of <i>Adopsin1</i> and <i>Adopsin3.</i> Genes related to calcification [plasma membrane calcium transporting ATPase 2 (<i>PMCA</i>)] and oxygen homeostasis regulation [hypoxia-inducible factor 1 alpha (<i>HIF1α</i>)] showed similar patterns. Rearing of branches under a day–night cycle (photoperiod = 12:12, 26.5–29.3 μmol s<sup>−1</sup> m<sup>−2</sup>) with red (<i>λ</i><sub>max</sub> = 628 nm), but not blue (464 nm) or green (519 nm) LED lighting led to increases in transcript levels of <i>Adopsin1</i> and <i>Adopsin3</i> during photophase. The transcript levels of carbonic anhydrase, <i>PMCA</i>, <i>HIFα</i>, and sodium-glucose cotransporter were significantly higher during photophase than during scotophase. Furthermore, <i>Adopsin3</i> upregulation occurred within 4 h of exposure to a red LED light at night. These results suggest that <i>A. digitifera</i> can responding to long wavelengths of light, which play a crucial role in the photophysiology of the coral host. The capacity to perceive red light provides advantages in physiological adaptation and ecological niche occupation by <i>A. digitifera</i> in shallow waters.</p>\",\"PeriodicalId\":10821,\"journal\":{\"name\":\"Coral Reefs\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Coral Reefs\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00338-024-02558-w\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MARINE & FRESHWATER BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coral Reefs","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00338-024-02558-w","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
Day–night expression patterns of opsin genes in the coral Acropora digitifera under natural and LED light conditions
Photoreception is essential to coral growth, reproduction, and stress responses. Thus far, opsin-based photoreception and potential photoadaptation in Scleractinian corals remains unclear. This study used natural and light-emitting diode (LED) lighting to investigate how Acropora digitifera, which is adapted to shallow-water environments, responds to day–night conditions. We successfully cloned three opsin genes (Adopsin1, Adopsin2, and Adopsin3). Adopsin1 and Adopsin2 clustered with the Cnidopsins, whereas Adopsin3 clustered with the anthozoan-specific opsin I group. In situ hybridization showed positive signals of these genes in coral endodermal and ectodermal layers. When A. digitifera branches were reared under a day–night cycle with natural light, a day-high and night-low pattern was observed in the transcript levels of Adopsin1 and Adopsin3. Genes related to calcification [plasma membrane calcium transporting ATPase 2 (PMCA)] and oxygen homeostasis regulation [hypoxia-inducible factor 1 alpha (HIF1α)] showed similar patterns. Rearing of branches under a day–night cycle (photoperiod = 12:12, 26.5–29.3 μmol s−1 m−2) with red (λmax = 628 nm), but not blue (464 nm) or green (519 nm) LED lighting led to increases in transcript levels of Adopsin1 and Adopsin3 during photophase. The transcript levels of carbonic anhydrase, PMCA, HIFα, and sodium-glucose cotransporter were significantly higher during photophase than during scotophase. Furthermore, Adopsin3 upregulation occurred within 4 h of exposure to a red LED light at night. These results suggest that A. digitifera can responding to long wavelengths of light, which play a crucial role in the photophysiology of the coral host. The capacity to perceive red light provides advantages in physiological adaptation and ecological niche occupation by A. digitifera in shallow waters.
期刊介绍:
Coral Reefs, the Journal of the International Coral Reef Society, presents multidisciplinary literature across the broad fields of reef studies, publishing analytical and theoretical papers on both modern and ancient reefs. These encourage the search for theories about reef structure and dynamics, and the use of experimentation, modeling, quantification and the applied sciences.
Coverage includes such subject areas as population dynamics; community ecology of reef organisms; energy and nutrient flows; biogeochemical cycles; physiology of calcification; reef responses to natural and anthropogenic influences; stress markers in reef organisms; behavioural ecology; sedimentology; diagenesis; reef structure and morphology; evolutionary ecology of the reef biota; palaeoceanography of coral reefs and coral islands; reef management and its underlying disciplines; molecular biology and genetics of coral; aetiology of disease in reef-related organisms; reef responses to global change, and more.