Nuba Zamora-Jordán, Pedro Martínez Martínez, Mariano Hernández, Cataixa López
{"title":"卡里贝藻及其相关内生菌对热应力的反应","authors":"Nuba Zamora-Jordán, Pedro Martínez Martínez, Mariano Hernández, Cataixa López","doi":"10.1007/s00338-024-02549-x","DOIUrl":null,"url":null,"abstract":"<p>In recent years, several studies have highlighted the high resilience of zoantharians to ocean warming. In particular, populations of <i>Palythoa caribaeorum</i> are proliferating and beginning to dominate the coastal ecosystems of the Canary Islands. This expansion has been associated with increasing sea surface temperatures (SSTs). Here, we provide new insights into the endosymbiont-<i>P. caribaeorum</i> associations during and after a heat stress experiment to understand the processes underlying their high resilience to elevated temperatures. For this purpose, 61 colonies collected in the Canary Islands were exposed to an increasing temperature gradient (from 24 to 32 °C) to assess their heat tolerance, and then transferred back to the control temperature (24 °C) to evaluate their resilience. Colonies performance was assessed by comparing host color changes (bleaching degree), analyzing their Symbiodiniaceae morphological condition, and determining the dominant lineage of Symbiodiniaceae using the psbA<sub>ncr</sub> molecular marker. All colonies showed signs of bleaching during heat stress, evidenced by color loss and a decrease in healthy Symbiodiniaceae content. Nevertheless, <i>P. caribaeorum</i> showed high resistance to heat stress, as all colonies kept up to 30 °C were able to survive and significantly recover. Furthermore, as the experimental temperature increased, a new haplotype of the <i>Cladocopium</i> C1 lineage, not detected in the control and wild samples, emerged and dominated most of the colonies (59.09%). Our study demonstrates the resilience of <i>P. caribaeorum</i> to heat stress in the Canary Islands, raising important ecological concerns about the future of native macroalgae ecosystems in an ocean warming scenario.</p>","PeriodicalId":10821,"journal":{"name":"Coral Reefs","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Responses of Palythoa caribaeorum and its associated endosymbionts to thermal stress\",\"authors\":\"Nuba Zamora-Jordán, Pedro Martínez Martínez, Mariano Hernández, Cataixa López\",\"doi\":\"10.1007/s00338-024-02549-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In recent years, several studies have highlighted the high resilience of zoantharians to ocean warming. In particular, populations of <i>Palythoa caribaeorum</i> are proliferating and beginning to dominate the coastal ecosystems of the Canary Islands. This expansion has been associated with increasing sea surface temperatures (SSTs). Here, we provide new insights into the endosymbiont-<i>P. caribaeorum</i> associations during and after a heat stress experiment to understand the processes underlying their high resilience to elevated temperatures. For this purpose, 61 colonies collected in the Canary Islands were exposed to an increasing temperature gradient (from 24 to 32 °C) to assess their heat tolerance, and then transferred back to the control temperature (24 °C) to evaluate their resilience. Colonies performance was assessed by comparing host color changes (bleaching degree), analyzing their Symbiodiniaceae morphological condition, and determining the dominant lineage of Symbiodiniaceae using the psbA<sub>ncr</sub> molecular marker. All colonies showed signs of bleaching during heat stress, evidenced by color loss and a decrease in healthy Symbiodiniaceae content. Nevertheless, <i>P. caribaeorum</i> showed high resistance to heat stress, as all colonies kept up to 30 °C were able to survive and significantly recover. Furthermore, as the experimental temperature increased, a new haplotype of the <i>Cladocopium</i> C1 lineage, not detected in the control and wild samples, emerged and dominated most of the colonies (59.09%). Our study demonstrates the resilience of <i>P. caribaeorum</i> to heat stress in the Canary Islands, raising important ecological concerns about the future of native macroalgae ecosystems in an ocean warming scenario.</p>\",\"PeriodicalId\":10821,\"journal\":{\"name\":\"Coral Reefs\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Coral Reefs\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00338-024-02549-x\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MARINE & FRESHWATER BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coral Reefs","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00338-024-02549-x","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
Responses of Palythoa caribaeorum and its associated endosymbionts to thermal stress
In recent years, several studies have highlighted the high resilience of zoantharians to ocean warming. In particular, populations of Palythoa caribaeorum are proliferating and beginning to dominate the coastal ecosystems of the Canary Islands. This expansion has been associated with increasing sea surface temperatures (SSTs). Here, we provide new insights into the endosymbiont-P. caribaeorum associations during and after a heat stress experiment to understand the processes underlying their high resilience to elevated temperatures. For this purpose, 61 colonies collected in the Canary Islands were exposed to an increasing temperature gradient (from 24 to 32 °C) to assess their heat tolerance, and then transferred back to the control temperature (24 °C) to evaluate their resilience. Colonies performance was assessed by comparing host color changes (bleaching degree), analyzing their Symbiodiniaceae morphological condition, and determining the dominant lineage of Symbiodiniaceae using the psbAncr molecular marker. All colonies showed signs of bleaching during heat stress, evidenced by color loss and a decrease in healthy Symbiodiniaceae content. Nevertheless, P. caribaeorum showed high resistance to heat stress, as all colonies kept up to 30 °C were able to survive and significantly recover. Furthermore, as the experimental temperature increased, a new haplotype of the Cladocopium C1 lineage, not detected in the control and wild samples, emerged and dominated most of the colonies (59.09%). Our study demonstrates the resilience of P. caribaeorum to heat stress in the Canary Islands, raising important ecological concerns about the future of native macroalgae ecosystems in an ocean warming scenario.
期刊介绍:
Coral Reefs, the Journal of the International Coral Reef Society, presents multidisciplinary literature across the broad fields of reef studies, publishing analytical and theoretical papers on both modern and ancient reefs. These encourage the search for theories about reef structure and dynamics, and the use of experimentation, modeling, quantification and the applied sciences.
Coverage includes such subject areas as population dynamics; community ecology of reef organisms; energy and nutrient flows; biogeochemical cycles; physiology of calcification; reef responses to natural and anthropogenic influences; stress markers in reef organisms; behavioural ecology; sedimentology; diagenesis; reef structure and morphology; evolutionary ecology of the reef biota; palaeoceanography of coral reefs and coral islands; reef management and its underlying disciplines; molecular biology and genetics of coral; aetiology of disease in reef-related organisms; reef responses to global change, and more.