地下特征、稀有物种和环境压力调节着生物多样性与生态系统功能之间的关系

IF 4.6 1区 环境科学与生态学 Q1 ECOLOGY
Greta La Bella, Alicia T. R. Acosta, Tommaso Jucker, Alessandro Bricca, Daniela Ciccarelli, Angela Stanisci, Melania Migliore, Marta Carboni
{"title":"地下特征、稀有物种和环境压力调节着生物多样性与生态系统功能之间的关系","authors":"Greta La Bella, Alicia T. R. Acosta, Tommaso Jucker, Alessandro Bricca, Daniela Ciccarelli, Angela Stanisci, Melania Migliore, Marta Carboni","doi":"10.1111/1365-2435.14649","DOIUrl":null,"url":null,"abstract":"<jats:list> <jats:list-item>Understanding the relationship between biodiversity and ecosystem functioning (BEF) is crucial to predicting the consequences of ongoing global biodiversity loss. However, what drives BEF relationships in natural ecosystems under globally changing conditions remains poorly understood.</jats:list-item> <jats:list-item>To address this knowledge gap, we applied a trait‐based approach to data from coastal dune plant communities distributed along a natural environmental stress gradient. Specifically, we compared the relative importance of below‐ground and above‐ground traits in predicting productivity, decomposition, water regulation, carbon stock and nutrient pools, and tested how these BEF relationships were modulated by environmental stress and the presence of rare species that are typically excluded from experimental systems.</jats:list-item> <jats:list-item>Below‐ground traits were just as important as above‐ground traits in driving ecosystem functioning. Moreover, despite having low abundances, rare species positively influenced ecosystem multifunctionality (EMF). However, most biodiversity effects became weaker as environmental stress increased.</jats:list-item> <jats:list-item>Our study shows that to understand variation in ecosystem functioning we must consider below‐ground traits as much as above‐ground ones. Moreover, it highlights the importance of conserving rare species for maintaining EMF. However, our findings also suggest that rapid global change could dampen the positive effects of diversity on ecosystem functioning.</jats:list-item> </jats:list>Read the free <jats:ext-link xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"https://fesummaries.wordpress.com/2024/08/21/how-roots-rare-species-and-environmental-stress-regulate-the-biodiversity-ecosystem-function-bef-relationship/\">Plain Language Summary</jats:ext-link> for this article on the Journal blog.","PeriodicalId":172,"journal":{"name":"Functional Ecology","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Below‐ground traits, rare species and environmental stress regulate the biodiversity–ecosystem function relationship\",\"authors\":\"Greta La Bella, Alicia T. R. Acosta, Tommaso Jucker, Alessandro Bricca, Daniela Ciccarelli, Angela Stanisci, Melania Migliore, Marta Carboni\",\"doi\":\"10.1111/1365-2435.14649\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<jats:list> <jats:list-item>Understanding the relationship between biodiversity and ecosystem functioning (BEF) is crucial to predicting the consequences of ongoing global biodiversity loss. However, what drives BEF relationships in natural ecosystems under globally changing conditions remains poorly understood.</jats:list-item> <jats:list-item>To address this knowledge gap, we applied a trait‐based approach to data from coastal dune plant communities distributed along a natural environmental stress gradient. Specifically, we compared the relative importance of below‐ground and above‐ground traits in predicting productivity, decomposition, water regulation, carbon stock and nutrient pools, and tested how these BEF relationships were modulated by environmental stress and the presence of rare species that are typically excluded from experimental systems.</jats:list-item> <jats:list-item>Below‐ground traits were just as important as above‐ground traits in driving ecosystem functioning. Moreover, despite having low abundances, rare species positively influenced ecosystem multifunctionality (EMF). However, most biodiversity effects became weaker as environmental stress increased.</jats:list-item> <jats:list-item>Our study shows that to understand variation in ecosystem functioning we must consider below‐ground traits as much as above‐ground ones. Moreover, it highlights the importance of conserving rare species for maintaining EMF. However, our findings also suggest that rapid global change could dampen the positive effects of diversity on ecosystem functioning.</jats:list-item> </jats:list>Read the free <jats:ext-link xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"https://fesummaries.wordpress.com/2024/08/21/how-roots-rare-species-and-environmental-stress-regulate-the-biodiversity-ecosystem-function-bef-relationship/\\\">Plain Language Summary</jats:ext-link> for this article on the Journal blog.\",\"PeriodicalId\":172,\"journal\":{\"name\":\"Functional Ecology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Functional Ecology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1111/1365-2435.14649\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional Ecology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1111/1365-2435.14649","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

了解生物多样性与生态系统功能(BEF)之间的关系对于预测全球生物多样性不断丧失的后果至关重要。然而,人们对全球变化条件下自然生态系统中生物多样性与生态系统功能关系的驱动因素仍然知之甚少。为了填补这一知识空白,我们对沿自然环境压力梯度分布的沿海沙丘植物群落的数据采用了基于性状的方法。具体来说,我们比较了地下性状和地上性状在预测生产力、分解、水调节、碳储量和养分库方面的相对重要性,并测试了这些BEF关系如何受环境压力和通常被排除在实验系统之外的稀有物种的影响。在驱动生态系统功能方面,地下特征与地上特征同样重要。此外,尽管稀有物种的丰度较低,但它们对生态系统的多功能性(EMF)有积极影响。然而,随着环境压力的增加,大多数生物多样性的影响变得越来越弱。我们的研究表明,要了解生态系统功能的变异,我们必须像考虑地面特征一样考虑地下特征。此外,这项研究还强调了保护稀有物种对维持电磁场的重要性。不过,我们的研究结果也表明,全球的快速变化可能会削弱多样性对生态系统功能的积极影响。在期刊博客上免费阅读本文的通俗语言摘要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Below‐ground traits, rare species and environmental stress regulate the biodiversity–ecosystem function relationship

Below‐ground traits, rare species and environmental stress regulate the biodiversity–ecosystem function relationship
Understanding the relationship between biodiversity and ecosystem functioning (BEF) is crucial to predicting the consequences of ongoing global biodiversity loss. However, what drives BEF relationships in natural ecosystems under globally changing conditions remains poorly understood. To address this knowledge gap, we applied a trait‐based approach to data from coastal dune plant communities distributed along a natural environmental stress gradient. Specifically, we compared the relative importance of below‐ground and above‐ground traits in predicting productivity, decomposition, water regulation, carbon stock and nutrient pools, and tested how these BEF relationships were modulated by environmental stress and the presence of rare species that are typically excluded from experimental systems. Below‐ground traits were just as important as above‐ground traits in driving ecosystem functioning. Moreover, despite having low abundances, rare species positively influenced ecosystem multifunctionality (EMF). However, most biodiversity effects became weaker as environmental stress increased. Our study shows that to understand variation in ecosystem functioning we must consider below‐ground traits as much as above‐ground ones. Moreover, it highlights the importance of conserving rare species for maintaining EMF. However, our findings also suggest that rapid global change could dampen the positive effects of diversity on ecosystem functioning. Read the free Plain Language Summary for this article on the Journal blog.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Functional Ecology
Functional Ecology 环境科学-生态学
CiteScore
9.00
自引率
1.90%
发文量
243
审稿时长
4 months
期刊介绍: Functional Ecology publishes high-impact papers that enable a mechanistic understanding of ecological pattern and process from the organismic to the ecosystem scale. Because of the multifaceted nature of this challenge, papers can be based on a wide range of approaches. Thus, manuscripts may vary from physiological, genetics, life-history, and behavioural perspectives for organismal studies to community and biogeochemical studies when the goal is to understand ecosystem and larger scale ecological phenomena. We believe that the diverse nature of our journal is a strength, not a weakness, and we are open-minded about the variety of data, research approaches and types of studies that we publish. Certain key areas will continue to be emphasized: studies that integrate genomics with ecology, studies that examine how key aspects of physiology (e.g., stress) impact the ecology of animals and plants, or vice versa, and how evolution shapes interactions among function and ecological traits. Ecology has increasingly moved towards the realization that organismal traits and activities are vital for understanding community dynamics and ecosystem processes, particularly in response to the rapid global changes occurring in earth’s environment, and Functional Ecology aims to publish such integrative papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信