氩 16++H(1s)碰撞中的状态选择性电子俘获,用于电荷交换重组光谱分析

IF 2.1 2区 物理与天体物理 Q2 PHYSICS, FLUIDS & PLASMAS
A M Kotian, N W Antonio, O Marchuk, A S Kadyrov
{"title":"氩 16++H(1s)碰撞中的状态选择性电子俘获,用于电荷交换重组光谱分析","authors":"A M Kotian, N W Antonio, O Marchuk, A S Kadyrov","doi":"10.1088/1361-6587/ad6a86","DOIUrl":null,"url":null,"abstract":"State-selective electron capture in collisions of Ar<sup>16+</sup> ions with ground-state hydrogen atoms has been modeled using the two-center wave-packet convergent close-coupling approach. The partially stripped He-like projectile ion is represented using a model potential. Experimental measurements are not available for this collision system and to date, only the classical trajectory Monte Carlo (CTMC) method has been applied to calculate cross sections. The calculated total electron-capture cross section (TECS) is in good agreement with the previous CTMC results at the low energies but slightly larger at higher energies. This is likely because, in this work, we account for capture into highly excited states, which contribute significantly to the TECS at the intermediate energies. The <italic toggle=\"yes\">n</italic>-resolved electron-capture cross sections have also been presented for capture into states with <inline-formula>\n<tex-math><?CDATA $n = 6-19$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:mi>n</mml:mi><mml:mo>=</mml:mo><mml:mn>6</mml:mn><mml:mo>−</mml:mo><mml:mn>19</mml:mn></mml:mrow></mml:math><inline-graphic xlink:href=\"ppcfad6a86ieqn3.gif\"></inline-graphic></inline-formula>, where <italic toggle=\"yes\">n</italic> is the final-state principal quantum number. The most important of these are the cross sections for capture into the <inline-formula>\n<tex-math><?CDATA $n = 14-17$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:mi>n</mml:mi><mml:mo>=</mml:mo><mml:mn>14</mml:mn><mml:mo>−</mml:mo><mml:mn>17</mml:mn></mml:mrow></mml:math><inline-graphic xlink:href=\"ppcfad6a86ieqn4.gif\"></inline-graphic></inline-formula> states, which are used in charge-exchange recombination spectroscopy techniques. For these cross sections, a significant difference is observed between the present and previously published data. The cross sections differ by an order of magnitude in the 10−60 keV u<sup>−1</sup> energy range. The agreement between the calculations is observed at the energies above 70 keV u<sup>−1</sup>. The <inline-formula>\n<tex-math><?CDATA $n\\ell$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:mi>n</mml:mi><mml:mi>ℓ</mml:mi></mml:mrow></mml:math><inline-graphic xlink:href=\"ppcfad6a86ieqn5.gif\"></inline-graphic></inline-formula>-resolved electron-capture cross sections have also been presented at 15, 60, 100 and 200 keV u<sup>−1</sup> projectile energies, where <inline-formula>\n<tex-math><?CDATA $\\ell$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:mi>ℓ</mml:mi></mml:mrow></mml:math><inline-graphic xlink:href=\"ppcfad6a86ieqn6.gif\"></inline-graphic></inline-formula> is the final-state angular momentum quantum number.","PeriodicalId":20239,"journal":{"name":"Plasma Physics and Controlled Fusion","volume":"86 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"State-selective electron capture in Ar 16++H (1s) collisions for charge-exchange recombination spectroscopy\",\"authors\":\"A M Kotian, N W Antonio, O Marchuk, A S Kadyrov\",\"doi\":\"10.1088/1361-6587/ad6a86\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"State-selective electron capture in collisions of Ar<sup>16+</sup> ions with ground-state hydrogen atoms has been modeled using the two-center wave-packet convergent close-coupling approach. The partially stripped He-like projectile ion is represented using a model potential. Experimental measurements are not available for this collision system and to date, only the classical trajectory Monte Carlo (CTMC) method has been applied to calculate cross sections. The calculated total electron-capture cross section (TECS) is in good agreement with the previous CTMC results at the low energies but slightly larger at higher energies. This is likely because, in this work, we account for capture into highly excited states, which contribute significantly to the TECS at the intermediate energies. The <italic toggle=\\\"yes\\\">n</italic>-resolved electron-capture cross sections have also been presented for capture into states with <inline-formula>\\n<tex-math><?CDATA $n = 6-19$?></tex-math><mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mi>n</mml:mi><mml:mo>=</mml:mo><mml:mn>6</mml:mn><mml:mo>−</mml:mo><mml:mn>19</mml:mn></mml:mrow></mml:math><inline-graphic xlink:href=\\\"ppcfad6a86ieqn3.gif\\\"></inline-graphic></inline-formula>, where <italic toggle=\\\"yes\\\">n</italic> is the final-state principal quantum number. The most important of these are the cross sections for capture into the <inline-formula>\\n<tex-math><?CDATA $n = 14-17$?></tex-math><mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mi>n</mml:mi><mml:mo>=</mml:mo><mml:mn>14</mml:mn><mml:mo>−</mml:mo><mml:mn>17</mml:mn></mml:mrow></mml:math><inline-graphic xlink:href=\\\"ppcfad6a86ieqn4.gif\\\"></inline-graphic></inline-formula> states, which are used in charge-exchange recombination spectroscopy techniques. For these cross sections, a significant difference is observed between the present and previously published data. The cross sections differ by an order of magnitude in the 10−60 keV u<sup>−1</sup> energy range. The agreement between the calculations is observed at the energies above 70 keV u<sup>−1</sup>. The <inline-formula>\\n<tex-math><?CDATA $n\\\\ell$?></tex-math><mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mi>n</mml:mi><mml:mi>ℓ</mml:mi></mml:mrow></mml:math><inline-graphic xlink:href=\\\"ppcfad6a86ieqn5.gif\\\"></inline-graphic></inline-formula>-resolved electron-capture cross sections have also been presented at 15, 60, 100 and 200 keV u<sup>−1</sup> projectile energies, where <inline-formula>\\n<tex-math><?CDATA $\\\\ell$?></tex-math><mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mi>ℓ</mml:mi></mml:mrow></mml:math><inline-graphic xlink:href=\\\"ppcfad6a86ieqn6.gif\\\"></inline-graphic></inline-formula> is the final-state angular momentum quantum number.\",\"PeriodicalId\":20239,\"journal\":{\"name\":\"Plasma Physics and Controlled Fusion\",\"volume\":\"86 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plasma Physics and Controlled Fusion\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6587/ad6a86\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, FLUIDS & PLASMAS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Physics and Controlled Fusion","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6587/ad6a86","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

摘要

利用双中心波包收敛紧密耦合方法模拟了 Ar16+ 离子与基态氢原子碰撞中的状态选择性电子俘获。部分剥离的类 He 射弹离子使用模型电势表示。该碰撞系统没有实验测量数据,因此迄今为止只能采用经典轨迹蒙特卡罗(CTMC)方法来计算截面。计算得出的电子捕获总截面(TECS)在低能量时与之前的 CTMC 结果非常吻合,但在高能量时则略有增大。这可能是因为在这项工作中,我们考虑到了高激发态的俘获,而高激发态在中间能量时对 TECS 有很大影响。对于俘获到 n=6-19 态(n 为最终态的主量子数)的电子俘获截面,我们也给出了 n 分辨电子俘获截面。其中最重要的是俘获到 n=14-17 态的截面,它用于电荷交换重组光谱技术。就这些截面而言,目前公布的数据与之前公布的数据存在显著差异。在 10-60 keV u-1 能量范围内,截面相差一个数量级。而在 70 keV u-1 以上的能量范围内,计算结果则趋于一致。在 15、60、100 和 200 keV u-1 的射弹能量下,nℓ 分辨的电子捕获截面也得到了展示,其中 ℓ 是终态角动量量子数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
State-selective electron capture in Ar 16++H (1s) collisions for charge-exchange recombination spectroscopy
State-selective electron capture in collisions of Ar16+ ions with ground-state hydrogen atoms has been modeled using the two-center wave-packet convergent close-coupling approach. The partially stripped He-like projectile ion is represented using a model potential. Experimental measurements are not available for this collision system and to date, only the classical trajectory Monte Carlo (CTMC) method has been applied to calculate cross sections. The calculated total electron-capture cross section (TECS) is in good agreement with the previous CTMC results at the low energies but slightly larger at higher energies. This is likely because, in this work, we account for capture into highly excited states, which contribute significantly to the TECS at the intermediate energies. The n-resolved electron-capture cross sections have also been presented for capture into states with n=619, where n is the final-state principal quantum number. The most important of these are the cross sections for capture into the n=1417 states, which are used in charge-exchange recombination spectroscopy techniques. For these cross sections, a significant difference is observed between the present and previously published data. The cross sections differ by an order of magnitude in the 10−60 keV u−1 energy range. The agreement between the calculations is observed at the energies above 70 keV u−1. The n-resolved electron-capture cross sections have also been presented at 15, 60, 100 and 200 keV u−1 projectile energies, where is the final-state angular momentum quantum number.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plasma Physics and Controlled Fusion
Plasma Physics and Controlled Fusion 物理-物理:核物理
CiteScore
4.50
自引率
13.60%
发文量
224
审稿时长
4.5 months
期刊介绍: Plasma Physics and Controlled Fusion covers all aspects of the physics of hot, highly ionised plasmas. This includes results of current experimental and theoretical research on all aspects of the physics of high-temperature plasmas and of controlled nuclear fusion, including the basic phenomena in highly-ionised gases in the laboratory, in the ionosphere and in space, in magnetic-confinement and inertial-confinement fusion as well as related diagnostic methods. Papers with a technological emphasis, for example in such topics as plasma control, fusion technology and diagnostics, are welcomed when the plasma physics is an integral part of the paper or when the technology is unique to plasma applications or new to the field of plasma physics. Papers on dusty plasma physics are welcome when there is a clear relevance to fusion.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信