F Cipolletta, N Schwarz, M Hoelzl, S Ventre, N Isernia, G Rubinacci, A Soba, M J Mantsinen, the JOREK Team7
{"title":"在 JOREK 与现实三维导电墙结构的耦合中实施矩阵压缩","authors":"F Cipolletta, N Schwarz, M Hoelzl, S Ventre, N Isernia, G Rubinacci, A Soba, M J Mantsinen, the JOREK Team7","doi":"10.1088/1361-6587/ad728a","DOIUrl":null,"url":null,"abstract":"JOREK is an advanced non-linear simulation code for studying MHD instabilities in magnetically confined fusion plasmas and their control and/or mitigation. A free-boundary and resistive wall extension was introduced via coupling to the STARWALL and CARIDDI codes, both able to provide dense response matrices describing the electromagnetic interactions between plasma and conducting structures. For detailed CAD representations of the conducting structures and high resolutions for the plasma region, memory and computing time limitations restrict the possibility of simulating the ITER tokamak. In the present work, the Singular Value Decomposition provided by routines from the ScaLAPACK library has been successfully applied to compress some of the dense response matrices and thus optimize memory usage. This is demonstrated for simulations of Tearing Mode and Vertical Displacement Event instabilities. An outlook to future applications on large production cases and further extensions of the method are discussed.","PeriodicalId":20239,"journal":{"name":"Plasma Physics and Controlled Fusion","volume":"54 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Implementation of matrix compression in the coupling of JOREK to realistic 3D conducting wall structures\",\"authors\":\"F Cipolletta, N Schwarz, M Hoelzl, S Ventre, N Isernia, G Rubinacci, A Soba, M J Mantsinen, the JOREK Team7\",\"doi\":\"10.1088/1361-6587/ad728a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"JOREK is an advanced non-linear simulation code for studying MHD instabilities in magnetically confined fusion plasmas and their control and/or mitigation. A free-boundary and resistive wall extension was introduced via coupling to the STARWALL and CARIDDI codes, both able to provide dense response matrices describing the electromagnetic interactions between plasma and conducting structures. For detailed CAD representations of the conducting structures and high resolutions for the plasma region, memory and computing time limitations restrict the possibility of simulating the ITER tokamak. In the present work, the Singular Value Decomposition provided by routines from the ScaLAPACK library has been successfully applied to compress some of the dense response matrices and thus optimize memory usage. This is demonstrated for simulations of Tearing Mode and Vertical Displacement Event instabilities. An outlook to future applications on large production cases and further extensions of the method are discussed.\",\"PeriodicalId\":20239,\"journal\":{\"name\":\"Plasma Physics and Controlled Fusion\",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plasma Physics and Controlled Fusion\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6587/ad728a\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, FLUIDS & PLASMAS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Physics and Controlled Fusion","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6587/ad728a","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
Implementation of matrix compression in the coupling of JOREK to realistic 3D conducting wall structures
JOREK is an advanced non-linear simulation code for studying MHD instabilities in magnetically confined fusion plasmas and their control and/or mitigation. A free-boundary and resistive wall extension was introduced via coupling to the STARWALL and CARIDDI codes, both able to provide dense response matrices describing the electromagnetic interactions between plasma and conducting structures. For detailed CAD representations of the conducting structures and high resolutions for the plasma region, memory and computing time limitations restrict the possibility of simulating the ITER tokamak. In the present work, the Singular Value Decomposition provided by routines from the ScaLAPACK library has been successfully applied to compress some of the dense response matrices and thus optimize memory usage. This is demonstrated for simulations of Tearing Mode and Vertical Displacement Event instabilities. An outlook to future applications on large production cases and further extensions of the method are discussed.
期刊介绍:
Plasma Physics and Controlled Fusion covers all aspects of the physics of hot, highly ionised plasmas. This includes results of current experimental and theoretical research on all aspects of the physics of high-temperature plasmas and of controlled nuclear fusion, including the basic phenomena in highly-ionised gases in the laboratory, in the ionosphere and in space, in magnetic-confinement and inertial-confinement fusion as well as related diagnostic methods.
Papers with a technological emphasis, for example in such topics as plasma control, fusion technology and diagnostics, are welcomed when the plasma physics is an integral part of the paper or when the technology is unique to plasma applications or new to the field of plasma physics. Papers on dusty plasma physics are welcome when there is a clear relevance to fusion.