用于陀螺动力学模拟的线性化福克-普朗克碰撞模型

IF 2.1 2区 物理与天体物理 Q2 PHYSICS, FLUIDS & PLASMAS
A von Boetticher, F I Parra, M Barnes
{"title":"用于陀螺动力学模拟的线性化福克-普朗克碰撞模型","authors":"A von Boetticher, F I Parra, M Barnes","doi":"10.1088/1361-6587/ad6c7c","DOIUrl":null,"url":null,"abstract":"We introduce a gyrokinetic, linearised Fokker–Planck collision model that satisfies conservation laws and is accurate at arbitrary collisionalities. The differential test-particle component of the operator is exact; the integral field-particle component is approximated using a spherical harmonic and a modified Laguerre polynomial expansion developed by Hirshman and Sigmar (1976 <italic toggle=\"yes\">Phys. Fluids</italic> <bold>19</bold> 1532). The numerical methods of the implementation in the δ<italic toggle=\"yes\">f</italic>-gyrokinetic code <inline-formula>\n<tex-math><?CDATA $\\texttt{stella}$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:mtext mathvariant=\"monospace\">stella</mml:mtext></mml:mrow></mml:math><inline-graphic xlink:href=\"ppcfad6c7cieqn1.gif\"></inline-graphic></inline-formula> (Barnes <italic toggle=\"yes\">et al</italic> 2019 <italic toggle=\"yes\">J. Comput. Phys.</italic> <bold>391</bold> 365–80) are discussed, and conservation properties of the operator are demonstrated. The collision model is then benchmarked against the collision model of the gyrokinetic solver <monospace>GS2</monospace> in the limiting cases of a reduced test-particle collision operator and energy- and momentum-conserving operator. The accuracy of the full collision model is investigated by solving the parallel Spitzer-Härm problem for the transport coefficients. It is shown that retaining collisional energy flux and higher-order terms in the field-particle operator reduces errors in the transport coefficients from 10%–25% for a simple momentum- and energy-conserving model to under 1%.","PeriodicalId":20239,"journal":{"name":"Plasma Physics and Controlled Fusion","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Linearised Fokker–Planck collision model for gyrokinetic simulations\",\"authors\":\"A von Boetticher, F I Parra, M Barnes\",\"doi\":\"10.1088/1361-6587/ad6c7c\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a gyrokinetic, linearised Fokker–Planck collision model that satisfies conservation laws and is accurate at arbitrary collisionalities. The differential test-particle component of the operator is exact; the integral field-particle component is approximated using a spherical harmonic and a modified Laguerre polynomial expansion developed by Hirshman and Sigmar (1976 <italic toggle=\\\"yes\\\">Phys. Fluids</italic> <bold>19</bold> 1532). The numerical methods of the implementation in the δ<italic toggle=\\\"yes\\\">f</italic>-gyrokinetic code <inline-formula>\\n<tex-math><?CDATA $\\\\texttt{stella}$?></tex-math><mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mtext mathvariant=\\\"monospace\\\">stella</mml:mtext></mml:mrow></mml:math><inline-graphic xlink:href=\\\"ppcfad6c7cieqn1.gif\\\"></inline-graphic></inline-formula> (Barnes <italic toggle=\\\"yes\\\">et al</italic> 2019 <italic toggle=\\\"yes\\\">J. Comput. Phys.</italic> <bold>391</bold> 365–80) are discussed, and conservation properties of the operator are demonstrated. The collision model is then benchmarked against the collision model of the gyrokinetic solver <monospace>GS2</monospace> in the limiting cases of a reduced test-particle collision operator and energy- and momentum-conserving operator. The accuracy of the full collision model is investigated by solving the parallel Spitzer-Härm problem for the transport coefficients. It is shown that retaining collisional energy flux and higher-order terms in the field-particle operator reduces errors in the transport coefficients from 10%–25% for a simple momentum- and energy-conserving model to under 1%.\",\"PeriodicalId\":20239,\"journal\":{\"name\":\"Plasma Physics and Controlled Fusion\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plasma Physics and Controlled Fusion\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6587/ad6c7c\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, FLUIDS & PLASMAS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Physics and Controlled Fusion","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6587/ad6c7c","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

摘要

我们介绍了一种陀螺动力线性化福克-普朗克碰撞模型,它满足守恒定律,在任意碰撞度下都很精确。该算子的测试粒子微分部分是精确的;场粒子积分部分则使用球谐波和 Hirshman 和 Sigmar(1976 年物理流体 19 1532)开发的修正拉盖尔多项式展开来近似。讨论了在δf-动量代码 stella(Barnes 等人,2019 年,《计算物理学》,391 365-80)中的数值实现方法,并演示了算子的守恒特性。然后,在减小的测试粒子碰撞算子以及能量和动量守恒算子的极限情况下,将碰撞模型与陀螺动力学求解器 GS2 的碰撞模型进行基准比较。通过求解传输系数的并行 Spitzer-Härm 问题,研究了完整碰撞模型的准确性。结果表明,在场粒子算子中保留碰撞能量通量和高阶项,可将传输系数误差从简单动量和能量守恒模型的 10%-25%降低到 1%以下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Linearised Fokker–Planck collision model for gyrokinetic simulations
We introduce a gyrokinetic, linearised Fokker–Planck collision model that satisfies conservation laws and is accurate at arbitrary collisionalities. The differential test-particle component of the operator is exact; the integral field-particle component is approximated using a spherical harmonic and a modified Laguerre polynomial expansion developed by Hirshman and Sigmar (1976 Phys. Fluids 19 1532). The numerical methods of the implementation in the δf-gyrokinetic code stella (Barnes et al 2019 J. Comput. Phys. 391 365–80) are discussed, and conservation properties of the operator are demonstrated. The collision model is then benchmarked against the collision model of the gyrokinetic solver GS2 in the limiting cases of a reduced test-particle collision operator and energy- and momentum-conserving operator. The accuracy of the full collision model is investigated by solving the parallel Spitzer-Härm problem for the transport coefficients. It is shown that retaining collisional energy flux and higher-order terms in the field-particle operator reduces errors in the transport coefficients from 10%–25% for a simple momentum- and energy-conserving model to under 1%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plasma Physics and Controlled Fusion
Plasma Physics and Controlled Fusion 物理-物理:核物理
CiteScore
4.50
自引率
13.60%
发文量
224
审稿时长
4.5 months
期刊介绍: Plasma Physics and Controlled Fusion covers all aspects of the physics of hot, highly ionised plasmas. This includes results of current experimental and theoretical research on all aspects of the physics of high-temperature plasmas and of controlled nuclear fusion, including the basic phenomena in highly-ionised gases in the laboratory, in the ionosphere and in space, in magnetic-confinement and inertial-confinement fusion as well as related diagnostic methods. Papers with a technological emphasis, for example in such topics as plasma control, fusion technology and diagnostics, are welcomed when the plasma physics is an integral part of the paper or when the technology is unique to plasma applications or new to the field of plasma physics. Papers on dusty plasma physics are welcome when there is a clear relevance to fusion.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信