与相位检索矢量相关的投影希尔伯特空间的拓扑结构

Fahimeh Arabyani Neyshaburi, Ali Akbar Arefijamaal, Ghadir Sadeghi
{"title":"与相位检索矢量相关的投影希尔伯特空间的拓扑结构","authors":"Fahimeh Arabyani Neyshaburi, Ali Akbar Arefijamaal, Ghadir Sadeghi","doi":"arxiv-2408.05317","DOIUrl":null,"url":null,"abstract":"Projective Hilbert spaces as the underlying spaces of this paper are obtained\nby identifying two vectors of a Hilbert space $\\mathcal{H}$ which have the same\nphase and denoted by $\\hat{\\mathcal{H}}$. For a family $\\Phi$ of vectors of\n$\\mathcal{H}$ we introduce a topology $\\tau_{\\Phi}$ on $\\hat{\\mathcal{H}}$ and\nprovide a topology-based approach for analyzing $\\hat{\\mathcal{H}}$. This leads\nto a new classification of phase retrieval property. We prove that\n$(\\hat{\\mathcal{H}}, \\tau_{\\Phi})$ is $\\sigma$-compact, as well as it is\nHausdorff if and only if $\\Phi$ does phase retrieval. In particular, if $\\Phi$\nis phase retrieval, then we prove that $(\\hat{\\mathcal{H}}, \\tau_{\\Phi})$ is\nmetrizable and $\\hat{\\mathcal{H}}$ is paracompact by a direct limit topology.\nAlso, we make a comparison between $\\tau_{\\Phi}$ and some known topologies\nincluding the quotient topology, the weak topology and the direct-limit\ntopology. Furthermore, we establish a metric $d_{\\Phi}$ on $\\hat{\\mathcal{H}}$\nand show that $d_{\\Phi}$ is weaker than the Bures-Wasserstein distance on\n$\\hat{\\mathcal{H}}$. As a result, in the finite dimensional case, we prove that\n$\\tau_{\\Phi}$ coincides with the weak topology and $\\tau_{d_{\\Phi}}$ on\n$\\hat{\\mathcal{H}}$ if and only if $\\Phi$ is phase retrieval.","PeriodicalId":501314,"journal":{"name":"arXiv - MATH - General Topology","volume":"48 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Topological structure of projective Hilbert spaces associated with phase retrieval vectors\",\"authors\":\"Fahimeh Arabyani Neyshaburi, Ali Akbar Arefijamaal, Ghadir Sadeghi\",\"doi\":\"arxiv-2408.05317\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Projective Hilbert spaces as the underlying spaces of this paper are obtained\\nby identifying two vectors of a Hilbert space $\\\\mathcal{H}$ which have the same\\nphase and denoted by $\\\\hat{\\\\mathcal{H}}$. For a family $\\\\Phi$ of vectors of\\n$\\\\mathcal{H}$ we introduce a topology $\\\\tau_{\\\\Phi}$ on $\\\\hat{\\\\mathcal{H}}$ and\\nprovide a topology-based approach for analyzing $\\\\hat{\\\\mathcal{H}}$. This leads\\nto a new classification of phase retrieval property. We prove that\\n$(\\\\hat{\\\\mathcal{H}}, \\\\tau_{\\\\Phi})$ is $\\\\sigma$-compact, as well as it is\\nHausdorff if and only if $\\\\Phi$ does phase retrieval. In particular, if $\\\\Phi$\\nis phase retrieval, then we prove that $(\\\\hat{\\\\mathcal{H}}, \\\\tau_{\\\\Phi})$ is\\nmetrizable and $\\\\hat{\\\\mathcal{H}}$ is paracompact by a direct limit topology.\\nAlso, we make a comparison between $\\\\tau_{\\\\Phi}$ and some known topologies\\nincluding the quotient topology, the weak topology and the direct-limit\\ntopology. Furthermore, we establish a metric $d_{\\\\Phi}$ on $\\\\hat{\\\\mathcal{H}}$\\nand show that $d_{\\\\Phi}$ is weaker than the Bures-Wasserstein distance on\\n$\\\\hat{\\\\mathcal{H}}$. As a result, in the finite dimensional case, we prove that\\n$\\\\tau_{\\\\Phi}$ coincides with the weak topology and $\\\\tau_{d_{\\\\Phi}}$ on\\n$\\\\hat{\\\\mathcal{H}}$ if and only if $\\\\Phi$ is phase retrieval.\",\"PeriodicalId\":501314,\"journal\":{\"name\":\"arXiv - MATH - General Topology\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - General Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.05317\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - General Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.05317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

作为本文基础空间的投影希尔伯特空间是通过识别希尔伯特空间 $\mathcal{H}$ 的两个矢量得到的,这两个矢量具有相同的相位,用 $\hat\{mathcal{H}}$ 表示。对于 $\Phi$ 的向量族,我们在 $\hat{mathcal{H}}$ 上引入了拓扑 $\tau_{\Phi}$ 并提供了一种基于拓扑的分析 $\hat{mathcal{H}}$ 的方法。这导致了一种新的相位检索属性分类。我们证明了$(\hat{mathcal{H}}, \tau_{\Phi})$是$\sigma$-compact的,并且当且仅当$\Phi$做相位检索时,它是Hausdorff的。特别地,如果 $\Phi$ 是相检索的,那么我们证明 $(\hat{mathcal{H}}, \tau_{Phi})$ 是可三维的,并且 $\hat{mathcal{H}}$ 通过直接极限拓扑是准紧凑的。同时,我们比较了 $\tau_{Phi}$ 和一些已知拓扑,包括商拓扑、弱拓扑和直接极限拓扑。此外,我们还在 $\hat{mathcal{H}}$ 上建立了一个度量 $d_{/Phi}$,并证明 $d_{/Phi}$ 比 $\hat{mathcal{H}}$ 上的布雷斯-瓦瑟斯坦距离(Bures-Wasserstein distance)更弱。因此,在有限维的情况下,我们证明了$\tau_{\Phi}$与$\hat{mathcal{H}}$上的弱拓扑和$\tau_{d_{Phi}$重合,当且仅当$\Phi$是相检索时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Topological structure of projective Hilbert spaces associated with phase retrieval vectors
Projective Hilbert spaces as the underlying spaces of this paper are obtained by identifying two vectors of a Hilbert space $\mathcal{H}$ which have the same phase and denoted by $\hat{\mathcal{H}}$. For a family $\Phi$ of vectors of $\mathcal{H}$ we introduce a topology $\tau_{\Phi}$ on $\hat{\mathcal{H}}$ and provide a topology-based approach for analyzing $\hat{\mathcal{H}}$. This leads to a new classification of phase retrieval property. We prove that $(\hat{\mathcal{H}}, \tau_{\Phi})$ is $\sigma$-compact, as well as it is Hausdorff if and only if $\Phi$ does phase retrieval. In particular, if $\Phi$ is phase retrieval, then we prove that $(\hat{\mathcal{H}}, \tau_{\Phi})$ is metrizable and $\hat{\mathcal{H}}$ is paracompact by a direct limit topology. Also, we make a comparison between $\tau_{\Phi}$ and some known topologies including the quotient topology, the weak topology and the direct-limit topology. Furthermore, we establish a metric $d_{\Phi}$ on $\hat{\mathcal{H}}$ and show that $d_{\Phi}$ is weaker than the Bures-Wasserstein distance on $\hat{\mathcal{H}}$. As a result, in the finite dimensional case, we prove that $\tau_{\Phi}$ coincides with the weak topology and $\tau_{d_{\Phi}}$ on $\hat{\mathcal{H}}$ if and only if $\Phi$ is phase retrieval.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信