S-度量空间中的统计收敛和粗略统计收敛

Sukila Khatun, Amar Kumar Banerjee
{"title":"S-度量空间中的统计收敛和粗略统计收敛","authors":"Sukila Khatun, Amar Kumar Banerjee","doi":"arxiv-2408.14973","DOIUrl":null,"url":null,"abstract":"In this paper, using the concept of natural density, we have introduced the\nideas of statistical and rough statistical convergence in an $S$-metric space.\nWe have investigated some of their basic properties. We have defined\nstatistical Cauchyness and statistical boundedness of sequences and then some\nresults related these ideas have been studied. We have defined the set of rough\nstatistical limit points of a sequence in an $S$-metric space and have proved\nsome relevant results associated with such type of convergence","PeriodicalId":501314,"journal":{"name":"arXiv - MATH - General Topology","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Statistical and rough statistical convergence in an S-metric space\",\"authors\":\"Sukila Khatun, Amar Kumar Banerjee\",\"doi\":\"arxiv-2408.14973\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, using the concept of natural density, we have introduced the\\nideas of statistical and rough statistical convergence in an $S$-metric space.\\nWe have investigated some of their basic properties. We have defined\\nstatistical Cauchyness and statistical boundedness of sequences and then some\\nresults related these ideas have been studied. We have defined the set of rough\\nstatistical limit points of a sequence in an $S$-metric space and have proved\\nsome relevant results associated with such type of convergence\",\"PeriodicalId\":501314,\"journal\":{\"name\":\"arXiv - MATH - General Topology\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - General Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.14973\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - General Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.14973","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文利用自然密度的概念,介绍了$S$计量空间中的统计收敛和粗略统计收敛的概念,并研究了它们的一些基本性质。我们定义了序列的统计考奇性和统计有界性,然后研究了与这些观点相关的一些结果。我们定义了$S$计量空间中序列的粗糙统计极限点集,并证明了与这类收敛相关的一些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Statistical and rough statistical convergence in an S-metric space
In this paper, using the concept of natural density, we have introduced the ideas of statistical and rough statistical convergence in an $S$-metric space. We have investigated some of their basic properties. We have defined statistical Cauchyness and statistical boundedness of sequences and then some results related these ideas have been studied. We have defined the set of rough statistical limit points of a sequence in an $S$-metric space and have proved some relevant results associated with such type of convergence
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信