重温ω$好过滤空间

Hualin Miao, Xiaodong Jia, Ao Shen, Qingguo Li
{"title":"重温ω$好过滤空间","authors":"Hualin Miao, Xiaodong Jia, Ao Shen, Qingguo Li","doi":"arxiv-2409.01551","DOIUrl":null,"url":null,"abstract":"We prove that a $T_0$ topological space is $\\omega$-well-filtered if and only\nif it does not admit either the natural numbers with the cofinite topology or\nwith the Scott topology as its closed subsets in the strong topology. Based on\nthis, we offer a refined topological characterization for the\n$\\omega$-well-filterification of $T_0$-spaces and solve a problem posed by\nXiaoquan Xu. In the setting of second countable spaces, we also characterise\nsobriety by convergences of certain $\\Pi^0_2$-Cauchy subsets of the spaces.","PeriodicalId":501314,"journal":{"name":"arXiv - MATH - General Topology","volume":"58 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"$ω$-well-filtered spaces, revisited\",\"authors\":\"Hualin Miao, Xiaodong Jia, Ao Shen, Qingguo Li\",\"doi\":\"arxiv-2409.01551\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that a $T_0$ topological space is $\\\\omega$-well-filtered if and only\\nif it does not admit either the natural numbers with the cofinite topology or\\nwith the Scott topology as its closed subsets in the strong topology. Based on\\nthis, we offer a refined topological characterization for the\\n$\\\\omega$-well-filterification of $T_0$-spaces and solve a problem posed by\\nXiaoquan Xu. In the setting of second countable spaces, we also characterise\\nsobriety by convergences of certain $\\\\Pi^0_2$-Cauchy subsets of the spaces.\",\"PeriodicalId\":501314,\"journal\":{\"name\":\"arXiv - MATH - General Topology\",\"volume\":\"58 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - General Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.01551\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - General Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.01551","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明,当且仅当$T_0$拓扑空间在强拓扑中既不接纳共穷拓扑的自然数,也不接纳斯科特拓扑的自然数作为其封闭子集时,它才是$\omega$-井过滤的。在此基础上,我们为$T_0$空间的$\omega$井过滤提供了一个精致的拓扑表征,并解决了徐小全提出的一个问题。在第二可数空间的背景下,我们还通过空间的某些$\Pi^0_2$-Cauchy子集的收敛性描述了优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
$ω$-well-filtered spaces, revisited
We prove that a $T_0$ topological space is $\omega$-well-filtered if and only if it does not admit either the natural numbers with the cofinite topology or with the Scott topology as its closed subsets in the strong topology. Based on this, we offer a refined topological characterization for the $\omega$-well-filterification of $T_0$-spaces and solve a problem posed by Xiaoquan Xu. In the setting of second countable spaces, we also characterise sobriety by convergences of certain $\Pi^0_2$-Cauchy subsets of the spaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信