Lipschitz 向量空间

Tullio Valent
{"title":"Lipschitz 向量空间","authors":"Tullio Valent","doi":"arxiv-2409.06574","DOIUrl":null,"url":null,"abstract":"The initial part of this paper is devoted to the notion of pseudo-seminorm on\na vector space $E$. We prove that the topology of every topological vector\nspace is defined by a family of pseudo-seminorms (and so, as it is known, it is\nuniformizable). Then we devote ourselves to the Lipschitz vector structures on\n$E$, that is those Lipschitz structures on $E$ for which the addition is a\nLipschitz map, while the scalar multiplication is a locally Lipschitz map, and\nwe prove that any topological vector structure on $E$ is associated to some\nLipschitz vector structure. Afterwards, we attend to the bornological Lipschitz maps. The final part of\nthe article is devoted to the Lipschitz vector structures compatible with\nlocally convex topologies on $E$.","PeriodicalId":501314,"journal":{"name":"arXiv - MATH - General Topology","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lipschitz vector spaces\",\"authors\":\"Tullio Valent\",\"doi\":\"arxiv-2409.06574\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The initial part of this paper is devoted to the notion of pseudo-seminorm on\\na vector space $E$. We prove that the topology of every topological vector\\nspace is defined by a family of pseudo-seminorms (and so, as it is known, it is\\nuniformizable). Then we devote ourselves to the Lipschitz vector structures on\\n$E$, that is those Lipschitz structures on $E$ for which the addition is a\\nLipschitz map, while the scalar multiplication is a locally Lipschitz map, and\\nwe prove that any topological vector structure on $E$ is associated to some\\nLipschitz vector structure. Afterwards, we attend to the bornological Lipschitz maps. The final part of\\nthe article is devoted to the Lipschitz vector structures compatible with\\nlocally convex topologies on $E$.\",\"PeriodicalId\":501314,\"journal\":{\"name\":\"arXiv - MATH - General Topology\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - General Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.06574\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - General Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06574","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文的第一部分专门讨论向量空间 $E$ 上的伪遍历概念。我们证明,每个拓扑向量空间的拓扑结构都是由一族伪seminorms定义的(因此,众所周知,它是可统一的)。然后,我们致力于研究 E$ 上的 Lipschitz 向量结构,即那些加法是 Lipschitz 映射,而标量乘法是局部 Lipschitz 映射的 E$ 上的 Lipschitz 结构,并证明 E$ 上的任何拓扑向量结构都与某个 Lipschitz 向量结构相关联。之后,我们将讨论天生利普齐兹映射。文章的最后一部分专门讨论与$E$上局部凸拓扑相容的利普齐兹向量结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lipschitz vector spaces
The initial part of this paper is devoted to the notion of pseudo-seminorm on a vector space $E$. We prove that the topology of every topological vector space is defined by a family of pseudo-seminorms (and so, as it is known, it is uniformizable). Then we devote ourselves to the Lipschitz vector structures on $E$, that is those Lipschitz structures on $E$ for which the addition is a Lipschitz map, while the scalar multiplication is a locally Lipschitz map, and we prove that any topological vector structure on $E$ is associated to some Lipschitz vector structure. Afterwards, we attend to the bornological Lipschitz maps. The final part of the article is devoted to the Lipschitz vector structures compatible with locally convex topologies on $E$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信