可积分九阶保守和耗散动力系统的新案例

Pub Date : 2024-09-13 DOI:10.1134/s1064562424601434
M. V. Shamolin
{"title":"可积分九阶保守和耗散动力系统的新案例","authors":"M. V. Shamolin","doi":"10.1134/s1064562424601434","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>New cases of integrable ninth-order dynamical systems that are homogeneous in terms of some of their variables are presented, in which a system on the tangent bundle of a four-dimensional manifold can be distinguished. In this case, the force field is divided into an internal (conservative) and an external one, which has dissipation of different signs. The external field is introduced using some unimodular transformation, and it generalizes previously considered fields. Complete sets of both first integrals and invariant differential forms are given.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New Cases of Integrable Ninth-Order Conservative and Dissipative Dynamical Systems\",\"authors\":\"M. V. Shamolin\",\"doi\":\"10.1134/s1064562424601434\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>New cases of integrable ninth-order dynamical systems that are homogeneous in terms of some of their variables are presented, in which a system on the tangent bundle of a four-dimensional manifold can be distinguished. In this case, the force field is divided into an internal (conservative) and an external one, which has dissipation of different signs. The external field is introduced using some unimodular transformation, and it generalizes previously considered fields. Complete sets of both first integrals and invariant differential forms are given.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1134/s1064562424601434\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s1064562424601434","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要 介绍了可积分九阶动力系统的新情况,这些系统的某些变量是同质的,其中可以区分四维流形切线束上的系统。在这种情况下,力场分为内部力场(保守力场)和外部力场,后者具有不同符号的耗散。外部力场是通过某种单模态变换引入的,它概括了之前考虑过的力场。给出了第一积分和不变微分形式的完整集合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
New Cases of Integrable Ninth-Order Conservative and Dissipative Dynamical Systems

Abstract

New cases of integrable ninth-order dynamical systems that are homogeneous in terms of some of their variables are presented, in which a system on the tangent bundle of a four-dimensional manifold can be distinguished. In this case, the force field is divided into an internal (conservative) and an external one, which has dissipation of different signs. The external field is introduced using some unimodular transformation, and it generalizes previously considered fields. Complete sets of both first integrals and invariant differential forms are given.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信