scASDC:单细胞 RNA-seq 数据的注意力增强型结构深度聚类

Wenwen Min, Zhen Wang, Fangfang Zhu, Taosheng Xu, Shunfang Wang
{"title":"scASDC:单细胞 RNA-seq 数据的注意力增强型结构深度聚类","authors":"Wenwen Min, Zhen Wang, Fangfang Zhu, Taosheng Xu, Shunfang Wang","doi":"arxiv-2408.05258","DOIUrl":null,"url":null,"abstract":"Single-cell RNA sequencing (scRNA-seq) data analysis is pivotal for\nunderstanding cellular heterogeneity. However, the high sparsity and complex\nnoise patterns inherent in scRNA-seq data present significant challenges for\ntraditional clustering methods. To address these issues, we propose a deep\nclustering method, Attention-Enhanced Structural Deep Embedding Graph\nClustering (scASDC), which integrates multiple advanced modules to improve\nclustering accuracy and robustness.Our approach employs a multi-layer graph\nconvolutional network (GCN) to capture high-order structural relationships\nbetween cells, termed as the graph autoencoder module. To mitigate the\noversmoothing issue in GCNs, we introduce a ZINB-based autoencoder module that\nextracts content information from the data and learns latent representations of\ngene expression. These modules are further integrated through an attention\nfusion mechanism, ensuring effective combination of gene expression and\nstructural information at each layer of the GCN. Additionally, a\nself-supervised learning module is incorporated to enhance the robustness of\nthe learned embeddings. Extensive experiments demonstrate that scASDC\noutperforms existing state-of-the-art methods, providing a robust and effective\nsolution for single-cell clustering tasks. Our method paves the way for more\naccurate and meaningful analysis of single-cell RNA sequencing data,\ncontributing to better understanding of cellular heterogeneity and biological\nprocesses. All code and public datasets used in this paper are available at\n\\url{https://github.com/wenwenmin/scASDC} and\n\\url{https://zenodo.org/records/12814320}.","PeriodicalId":501070,"journal":{"name":"arXiv - QuanBio - Genomics","volume":"86 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"scASDC: Attention Enhanced Structural Deep Clustering for Single-cell RNA-seq Data\",\"authors\":\"Wenwen Min, Zhen Wang, Fangfang Zhu, Taosheng Xu, Shunfang Wang\",\"doi\":\"arxiv-2408.05258\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Single-cell RNA sequencing (scRNA-seq) data analysis is pivotal for\\nunderstanding cellular heterogeneity. However, the high sparsity and complex\\nnoise patterns inherent in scRNA-seq data present significant challenges for\\ntraditional clustering methods. To address these issues, we propose a deep\\nclustering method, Attention-Enhanced Structural Deep Embedding Graph\\nClustering (scASDC), which integrates multiple advanced modules to improve\\nclustering accuracy and robustness.Our approach employs a multi-layer graph\\nconvolutional network (GCN) to capture high-order structural relationships\\nbetween cells, termed as the graph autoencoder module. To mitigate the\\noversmoothing issue in GCNs, we introduce a ZINB-based autoencoder module that\\nextracts content information from the data and learns latent representations of\\ngene expression. These modules are further integrated through an attention\\nfusion mechanism, ensuring effective combination of gene expression and\\nstructural information at each layer of the GCN. Additionally, a\\nself-supervised learning module is incorporated to enhance the robustness of\\nthe learned embeddings. Extensive experiments demonstrate that scASDC\\noutperforms existing state-of-the-art methods, providing a robust and effective\\nsolution for single-cell clustering tasks. Our method paves the way for more\\naccurate and meaningful analysis of single-cell RNA sequencing data,\\ncontributing to better understanding of cellular heterogeneity and biological\\nprocesses. All code and public datasets used in this paper are available at\\n\\\\url{https://github.com/wenwenmin/scASDC} and\\n\\\\url{https://zenodo.org/records/12814320}.\",\"PeriodicalId\":501070,\"journal\":{\"name\":\"arXiv - QuanBio - Genomics\",\"volume\":\"86 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuanBio - Genomics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.05258\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.05258","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

单细胞 RNA 测序(scRNA-seq)数据分析是了解细胞异质性的关键。然而,scRNA-seq 数据固有的高稀疏性和复杂噪声模式给传统聚类方法带来了巨大挑战。为了解决这些问题,我们提出了一种深度聚类方法--注意力增强结构深度嵌入图聚类(scASDC),它集成了多个高级模块,以提高聚类的准确性和鲁棒性。我们的方法采用了多层图卷积网络(GCN)来捕捉细胞之间的高阶结构关系,称为图自动编码器模块。为了缓解 GCN 中的过度平滑问题,我们引入了基于 ZINB 的自动编码器模块,该模块从数据中提取内容信息,并学习基因表达的潜在表征。这些模块通过注意力融合机制进一步整合,确保在 GCN 的每一层都能有效结合基因表达和结构信息。此外,还加入了自我监督学习模块,以增强所学嵌入的鲁棒性。广泛的实验证明,scASDC优于现有的最先进方法,为单细胞聚类任务提供了一种稳健有效的解决方案。我们的方法为更准确、更有意义地分析单细胞 RNA 测序数据铺平了道路,有助于更好地理解细胞异质性和生物过程。本文使用的所有代码和公开数据集可在以下网址获取:\url{https://github.com/wenwenmin/scASDC} 和\url{https://zenodo.org/records/12814320}。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
scASDC: Attention Enhanced Structural Deep Clustering for Single-cell RNA-seq Data
Single-cell RNA sequencing (scRNA-seq) data analysis is pivotal for understanding cellular heterogeneity. However, the high sparsity and complex noise patterns inherent in scRNA-seq data present significant challenges for traditional clustering methods. To address these issues, we propose a deep clustering method, Attention-Enhanced Structural Deep Embedding Graph Clustering (scASDC), which integrates multiple advanced modules to improve clustering accuracy and robustness.Our approach employs a multi-layer graph convolutional network (GCN) to capture high-order structural relationships between cells, termed as the graph autoencoder module. To mitigate the oversmoothing issue in GCNs, we introduce a ZINB-based autoencoder module that extracts content information from the data and learns latent representations of gene expression. These modules are further integrated through an attention fusion mechanism, ensuring effective combination of gene expression and structural information at each layer of the GCN. Additionally, a self-supervised learning module is incorporated to enhance the robustness of the learned embeddings. Extensive experiments demonstrate that scASDC outperforms existing state-of-the-art methods, providing a robust and effective solution for single-cell clustering tasks. Our method paves the way for more accurate and meaningful analysis of single-cell RNA sequencing data, contributing to better understanding of cellular heterogeneity and biological processes. All code and public datasets used in this paper are available at \url{https://github.com/wenwenmin/scASDC} and \url{https://zenodo.org/records/12814320}.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信