色谱系统的逆向设计和边界可控性

IF 1.2 3区 数学 Q1 MATHEMATICS
Giuseppe Maria Coclite, Nicola De Nitti, Carlotta Donadello, Florian Peru
{"title":"色谱系统的逆向设计和边界可控性","authors":"Giuseppe Maria Coclite, Nicola De Nitti, Carlotta Donadello, Florian Peru","doi":"10.1007/s00032-024-00402-y","DOIUrl":null,"url":null,"abstract":"<p>We consider the prototypical example of the <span>\\(2\\times 2\\)</span> liquid chromatography system and characterize the set of initial data leading to a given attainable profile at <span>\\(t=T\\)</span>. For profiles that are not attainable at time <i>T</i>, we study a non-smooth optimization problem: recovering the initial data that lead as close as possible to the target in the <span>\\(L^2\\)</span>-norm. We then study the system on a bounded domain and use a boundary control to steer its dynamics to a given trajectory. Finally, we implement a suitable finite volumes scheme to illustrate these results and show its numerical convergence. Minor modifications of our arguments apply to the Keyfitz–Kranzer system.</p>","PeriodicalId":49811,"journal":{"name":"Milan Journal of Mathematics","volume":"22 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inverse Design and Boundary Controllability for the Chromatography System\",\"authors\":\"Giuseppe Maria Coclite, Nicola De Nitti, Carlotta Donadello, Florian Peru\",\"doi\":\"10.1007/s00032-024-00402-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider the prototypical example of the <span>\\\\(2\\\\times 2\\\\)</span> liquid chromatography system and characterize the set of initial data leading to a given attainable profile at <span>\\\\(t=T\\\\)</span>. For profiles that are not attainable at time <i>T</i>, we study a non-smooth optimization problem: recovering the initial data that lead as close as possible to the target in the <span>\\\\(L^2\\\\)</span>-norm. We then study the system on a bounded domain and use a boundary control to steer its dynamics to a given trajectory. Finally, we implement a suitable finite volumes scheme to illustrate these results and show its numerical convergence. Minor modifications of our arguments apply to the Keyfitz–Kranzer system.</p>\",\"PeriodicalId\":49811,\"journal\":{\"name\":\"Milan Journal of Mathematics\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Milan Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00032-024-00402-y\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Milan Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00032-024-00402-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了液相色谱系统的原型,并描述了在 \(t=T\) 时导致给定可实现剖面的初始数据集的特征。对于在 T 时无法实现的剖面,我们研究了一个非平滑优化问题:恢复初始数据,使其尽可能接近 \(L^2\)-norm 中的目标。然后,我们在有界域上研究该系统,并使用边界控制将其动态转向给定轨迹。最后,我们采用合适的有限体积方案来说明这些结果,并展示其数值收敛性。我们对Keyfitz-Kranzer系统的论证稍作修改即可应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Inverse Design and Boundary Controllability for the Chromatography System

Inverse Design and Boundary Controllability for the Chromatography System

We consider the prototypical example of the \(2\times 2\) liquid chromatography system and characterize the set of initial data leading to a given attainable profile at \(t=T\). For profiles that are not attainable at time T, we study a non-smooth optimization problem: recovering the initial data that lead as close as possible to the target in the \(L^2\)-norm. We then study the system on a bounded domain and use a boundary control to steer its dynamics to a given trajectory. Finally, we implement a suitable finite volumes scheme to illustrate these results and show its numerical convergence. Minor modifications of our arguments apply to the Keyfitz–Kranzer system.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.60
自引率
0.00%
发文量
23
审稿时长
>12 weeks
期刊介绍: Milan Journal of Mathematics (MJM) publishes high quality articles from all areas of Mathematics and the Mathematical Sciences. The authors are invited to submit "articles with background", presenting a problem of current research with its history and its developments, the current state and possible future directions. The presentation should render the article of interest to a wider audience than just specialists. Many of the articles will be "invited contributions" from speakers in the "Seminario Matematico e Fisico di Milano". However, also other authors are welcome to submit articles which are in line with the "Aims and Scope" of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信