色谱系统的逆向设计和边界可控性

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Giuseppe Maria Coclite, Nicola De Nitti, Carlotta Donadello, Florian Peru
{"title":"色谱系统的逆向设计和边界可控性","authors":"Giuseppe Maria Coclite, Nicola De Nitti, Carlotta Donadello, Florian Peru","doi":"10.1007/s00032-024-00402-y","DOIUrl":null,"url":null,"abstract":"<p>We consider the prototypical example of the <span>\\(2\\times 2\\)</span> liquid chromatography system and characterize the set of initial data leading to a given attainable profile at <span>\\(t=T\\)</span>. For profiles that are not attainable at time <i>T</i>, we study a non-smooth optimization problem: recovering the initial data that lead as close as possible to the target in the <span>\\(L^2\\)</span>-norm. We then study the system on a bounded domain and use a boundary control to steer its dynamics to a given trajectory. Finally, we implement a suitable finite volumes scheme to illustrate these results and show its numerical convergence. Minor modifications of our arguments apply to the Keyfitz–Kranzer system.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inverse Design and Boundary Controllability for the Chromatography System\",\"authors\":\"Giuseppe Maria Coclite, Nicola De Nitti, Carlotta Donadello, Florian Peru\",\"doi\":\"10.1007/s00032-024-00402-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider the prototypical example of the <span>\\\\(2\\\\times 2\\\\)</span> liquid chromatography system and characterize the set of initial data leading to a given attainable profile at <span>\\\\(t=T\\\\)</span>. For profiles that are not attainable at time <i>T</i>, we study a non-smooth optimization problem: recovering the initial data that lead as close as possible to the target in the <span>\\\\(L^2\\\\)</span>-norm. We then study the system on a bounded domain and use a boundary control to steer its dynamics to a given trajectory. Finally, we implement a suitable finite volumes scheme to illustrate these results and show its numerical convergence. Minor modifications of our arguments apply to the Keyfitz–Kranzer system.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00032-024-00402-y\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00032-024-00402-y","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了液相色谱系统的原型,并描述了在 \(t=T\) 时导致给定可实现剖面的初始数据集的特征。对于在 T 时无法实现的剖面,我们研究了一个非平滑优化问题:恢复初始数据,使其尽可能接近 \(L^2\)-norm 中的目标。然后,我们在有界域上研究该系统,并使用边界控制将其动态转向给定轨迹。最后,我们采用合适的有限体积方案来说明这些结果,并展示其数值收敛性。我们对Keyfitz-Kranzer系统的论证稍作修改即可应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Inverse Design and Boundary Controllability for the Chromatography System

Inverse Design and Boundary Controllability for the Chromatography System

We consider the prototypical example of the \(2\times 2\) liquid chromatography system and characterize the set of initial data leading to a given attainable profile at \(t=T\). For profiles that are not attainable at time T, we study a non-smooth optimization problem: recovering the initial data that lead as close as possible to the target in the \(L^2\)-norm. We then study the system on a bounded domain and use a boundary control to steer its dynamics to a given trajectory. Finally, we implement a suitable finite volumes scheme to illustrate these results and show its numerical convergence. Minor modifications of our arguments apply to the Keyfitz–Kranzer system.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信