Giuseppe Maria Coclite, Nicola De Nitti, Carlotta Donadello, Florian Peru
{"title":"色谱系统的逆向设计和边界可控性","authors":"Giuseppe Maria Coclite, Nicola De Nitti, Carlotta Donadello, Florian Peru","doi":"10.1007/s00032-024-00402-y","DOIUrl":null,"url":null,"abstract":"<p>We consider the prototypical example of the <span>\\(2\\times 2\\)</span> liquid chromatography system and characterize the set of initial data leading to a given attainable profile at <span>\\(t=T\\)</span>. For profiles that are not attainable at time <i>T</i>, we study a non-smooth optimization problem: recovering the initial data that lead as close as possible to the target in the <span>\\(L^2\\)</span>-norm. We then study the system on a bounded domain and use a boundary control to steer its dynamics to a given trajectory. Finally, we implement a suitable finite volumes scheme to illustrate these results and show its numerical convergence. Minor modifications of our arguments apply to the Keyfitz–Kranzer system.</p>","PeriodicalId":49811,"journal":{"name":"Milan Journal of Mathematics","volume":"22 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inverse Design and Boundary Controllability for the Chromatography System\",\"authors\":\"Giuseppe Maria Coclite, Nicola De Nitti, Carlotta Donadello, Florian Peru\",\"doi\":\"10.1007/s00032-024-00402-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider the prototypical example of the <span>\\\\(2\\\\times 2\\\\)</span> liquid chromatography system and characterize the set of initial data leading to a given attainable profile at <span>\\\\(t=T\\\\)</span>. For profiles that are not attainable at time <i>T</i>, we study a non-smooth optimization problem: recovering the initial data that lead as close as possible to the target in the <span>\\\\(L^2\\\\)</span>-norm. We then study the system on a bounded domain and use a boundary control to steer its dynamics to a given trajectory. Finally, we implement a suitable finite volumes scheme to illustrate these results and show its numerical convergence. Minor modifications of our arguments apply to the Keyfitz–Kranzer system.</p>\",\"PeriodicalId\":49811,\"journal\":{\"name\":\"Milan Journal of Mathematics\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Milan Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00032-024-00402-y\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Milan Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00032-024-00402-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们考虑了液相色谱系统的原型,并描述了在 \(t=T\) 时导致给定可实现剖面的初始数据集的特征。对于在 T 时无法实现的剖面,我们研究了一个非平滑优化问题:恢复初始数据,使其尽可能接近 \(L^2\)-norm 中的目标。然后,我们在有界域上研究该系统,并使用边界控制将其动态转向给定轨迹。最后,我们采用合适的有限体积方案来说明这些结果,并展示其数值收敛性。我们对Keyfitz-Kranzer系统的论证稍作修改即可应用。
Inverse Design and Boundary Controllability for the Chromatography System
We consider the prototypical example of the \(2\times 2\) liquid chromatography system and characterize the set of initial data leading to a given attainable profile at \(t=T\). For profiles that are not attainable at time T, we study a non-smooth optimization problem: recovering the initial data that lead as close as possible to the target in the \(L^2\)-norm. We then study the system on a bounded domain and use a boundary control to steer its dynamics to a given trajectory. Finally, we implement a suitable finite volumes scheme to illustrate these results and show its numerical convergence. Minor modifications of our arguments apply to the Keyfitz–Kranzer system.
期刊介绍:
Milan Journal of Mathematics (MJM) publishes high quality articles from all areas of Mathematics and the Mathematical Sciences. The authors are invited to submit "articles with background", presenting a problem of current research with its history and its developments, the current state and possible future directions. The presentation should render the article of interest to a wider audience than just specialists.
Many of the articles will be "invited contributions" from speakers in the "Seminario Matematico e Fisico di Milano". However, also other authors are welcome to submit articles which are in line with the "Aims and Scope" of the journal.