光化学过程驱动暗海中溶解有机物的热反应

Ang Hu, Yifan Cui, Sarah Bercovici, Andrew Tanentzap, Jay Lennon, Xiaopei Lin, Yuanhe Yang, Yongqin Liu, Helena Osterholz, Hailiang Dong, Yahai Lu, Nianzhi Jiao, Jianjun Wang
{"title":"光化学过程驱动暗海中溶解有机物的热反应","authors":"Ang Hu, Yifan Cui, Sarah Bercovici, Andrew Tanentzap, Jay Lennon, Xiaopei Lin, Yuanhe Yang, Yongqin Liu, Helena Osterholz, Hailiang Dong, Yahai Lu, Nianzhi Jiao, Jianjun Wang","doi":"10.1101/2024.09.06.611638","DOIUrl":null,"url":null,"abstract":"How dissolved organic matter (DOM) responds to climate warming is critical for understanding its effectiveness as a natural climate solution. Here, we use a highly resolved dataset of 821 DOM samples covering the surface waters to the deep Atlantic, Southern, and Pacific oceans to examine molecular-level responses to warming water temperatures, i.e. their thermal responses. In general, the strength and diversity of thermal responses among individual molecules both decline towards the deep waters, but they show decreasing and increasing trends with more recalcitrant molecules in concentration, respectively. Their contrasting trends concur with the more important role of photochemical processes in explaining the diversity of thermal responses than the strength. By projecting global ocean thermal responses from 1950-2020, we predict increases in the diversity are unexpectedly largest at deeper depths (> 1,000 m). Such increases could elevate recalcitrant deep-ocean carbon sink by approximately 10 Tg C yr-1 which accounts for > 5% of the carbon flux survived to the deep ocean. Our findings highlight the importance of photochemical legacies in driving DOM thermal responses and further help predict the future oceanic carbon sink under global change.","PeriodicalId":501320,"journal":{"name":"bioRxiv - Ecology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photochemical processes drive thermal responses of dissolved organic matter in the dark ocean\",\"authors\":\"Ang Hu, Yifan Cui, Sarah Bercovici, Andrew Tanentzap, Jay Lennon, Xiaopei Lin, Yuanhe Yang, Yongqin Liu, Helena Osterholz, Hailiang Dong, Yahai Lu, Nianzhi Jiao, Jianjun Wang\",\"doi\":\"10.1101/2024.09.06.611638\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"How dissolved organic matter (DOM) responds to climate warming is critical for understanding its effectiveness as a natural climate solution. Here, we use a highly resolved dataset of 821 DOM samples covering the surface waters to the deep Atlantic, Southern, and Pacific oceans to examine molecular-level responses to warming water temperatures, i.e. their thermal responses. In general, the strength and diversity of thermal responses among individual molecules both decline towards the deep waters, but they show decreasing and increasing trends with more recalcitrant molecules in concentration, respectively. Their contrasting trends concur with the more important role of photochemical processes in explaining the diversity of thermal responses than the strength. By projecting global ocean thermal responses from 1950-2020, we predict increases in the diversity are unexpectedly largest at deeper depths (> 1,000 m). Such increases could elevate recalcitrant deep-ocean carbon sink by approximately 10 Tg C yr-1 which accounts for > 5% of the carbon flux survived to the deep ocean. Our findings highlight the importance of photochemical legacies in driving DOM thermal responses and further help predict the future oceanic carbon sink under global change.\",\"PeriodicalId\":501320,\"journal\":{\"name\":\"bioRxiv - Ecology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv - Ecology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.09.06.611638\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Ecology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.06.611638","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

溶解有机物(DOM)如何应对气候变暖对于了解其作为自然气候解决方案的有效性至关重要。在这里,我们使用了一个由 821 个溶解有机物样本组成的高分辨率数据集,涵盖了从表层水到大西洋、南大洋和太平洋深海的水域,以研究分子层面对水温变暖的反应,即热反应。一般来说,单个分子的热反应强度和多样性在向深海移动时都会下降,但随着分子浓度的增加,它们分别呈现出下降和上升的趋势。它们的对比趋势表明,光化学过程在解释热反应多样性方面的作用比热反应强度更为重要。通过预测 1950-2020 年的全球海洋热响应,我们预测在更深的海域(1000 米),热响应多样性的增加会出乎意料地最大。这种增加可能会使深海碳汇增加约10 Tg C/yr-1,占深海存活碳通量的5%。我们的发现强调了光化学遗留物在驱动 DOM 热反应中的重要性,并进一步帮助预测全球变化下的未来海洋碳汇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Photochemical processes drive thermal responses of dissolved organic matter in the dark ocean
How dissolved organic matter (DOM) responds to climate warming is critical for understanding its effectiveness as a natural climate solution. Here, we use a highly resolved dataset of 821 DOM samples covering the surface waters to the deep Atlantic, Southern, and Pacific oceans to examine molecular-level responses to warming water temperatures, i.e. their thermal responses. In general, the strength and diversity of thermal responses among individual molecules both decline towards the deep waters, but they show decreasing and increasing trends with more recalcitrant molecules in concentration, respectively. Their contrasting trends concur with the more important role of photochemical processes in explaining the diversity of thermal responses than the strength. By projecting global ocean thermal responses from 1950-2020, we predict increases in the diversity are unexpectedly largest at deeper depths (> 1,000 m). Such increases could elevate recalcitrant deep-ocean carbon sink by approximately 10 Tg C yr-1 which accounts for > 5% of the carbon flux survived to the deep ocean. Our findings highlight the importance of photochemical legacies in driving DOM thermal responses and further help predict the future oceanic carbon sink under global change.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信