Mustafa Muthanna Najm Shahrabani, Rasa Apanaviciene
{"title":"基于人工智能的智能建筑融入智慧城市评估框架","authors":"Mustafa Muthanna Najm Shahrabani, Rasa Apanaviciene","doi":"10.3390/su16188032","DOIUrl":null,"url":null,"abstract":"The integration of smart buildings (SBs) into smart cities (SCs) is critical to urban development, with the potential to improve SCs’ performance. Artificial intelligence (AI) applications have emerged as a promising tool to enhance SB and SC development. The authors apply an AI-based methodology, particularly Large Language Models of OpenAI ChatGPT-3 and Google Bard as AI experts, to uniquely evaluate 26 criteria that represent SB services across five SC infrastructure domains (energy, mobility, water, waste management, and security), emphasizing their contributions to the integration of SB into SC and quantifying their impact on the efficiency, resilience, and environmental sustainability of SC. The framework was then validated through two rounds of the Delphi method, leveraging human expert knowledge and an iterative consensus-building process. The framework’s efficiency in analyzing complicated information and generating important insights is demonstrated via five case studies. These findings contribute to a deeper understanding of the effects of SB services on SC infrastructure domains, highlighting the intricate nature of SC, as well as revealing areas that require further integration to realize the SC performance objectives.","PeriodicalId":22183,"journal":{"name":"Sustainability","volume":"9 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An AI-Based Evaluation Framework for Smart Building Integration into Smart City\",\"authors\":\"Mustafa Muthanna Najm Shahrabani, Rasa Apanaviciene\",\"doi\":\"10.3390/su16188032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The integration of smart buildings (SBs) into smart cities (SCs) is critical to urban development, with the potential to improve SCs’ performance. Artificial intelligence (AI) applications have emerged as a promising tool to enhance SB and SC development. The authors apply an AI-based methodology, particularly Large Language Models of OpenAI ChatGPT-3 and Google Bard as AI experts, to uniquely evaluate 26 criteria that represent SB services across five SC infrastructure domains (energy, mobility, water, waste management, and security), emphasizing their contributions to the integration of SB into SC and quantifying their impact on the efficiency, resilience, and environmental sustainability of SC. The framework was then validated through two rounds of the Delphi method, leveraging human expert knowledge and an iterative consensus-building process. The framework’s efficiency in analyzing complicated information and generating important insights is demonstrated via five case studies. These findings contribute to a deeper understanding of the effects of SB services on SC infrastructure domains, highlighting the intricate nature of SC, as well as revealing areas that require further integration to realize the SC performance objectives.\",\"PeriodicalId\":22183,\"journal\":{\"name\":\"Sustainability\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainability\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.3390/su16188032\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainability","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/su16188032","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
An AI-Based Evaluation Framework for Smart Building Integration into Smart City
The integration of smart buildings (SBs) into smart cities (SCs) is critical to urban development, with the potential to improve SCs’ performance. Artificial intelligence (AI) applications have emerged as a promising tool to enhance SB and SC development. The authors apply an AI-based methodology, particularly Large Language Models of OpenAI ChatGPT-3 and Google Bard as AI experts, to uniquely evaluate 26 criteria that represent SB services across five SC infrastructure domains (energy, mobility, water, waste management, and security), emphasizing their contributions to the integration of SB into SC and quantifying their impact on the efficiency, resilience, and environmental sustainability of SC. The framework was then validated through two rounds of the Delphi method, leveraging human expert knowledge and an iterative consensus-building process. The framework’s efficiency in analyzing complicated information and generating important insights is demonstrated via five case studies. These findings contribute to a deeper understanding of the effects of SB services on SC infrastructure domains, highlighting the intricate nature of SC, as well as revealing areas that require further integration to realize the SC performance objectives.
期刊介绍:
Sustainability (ISSN 2071-1050) is an international and cross-disciplinary scholarly, open access journal of environmental, cultural, economic and social sustainability of human beings, which provides an advanced forum for studies related to sustainability and sustainable development. It publishes reviews, regular research papers, communications and short notes, and there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research relating to natural sciences, social sciences and humanities in as much detail as possible in order to promote scientific predictions and impact assessments of global change and development. Full experimental and methodical details must be provided so that the results can be reproduced.