康维希尔舒伯特变项和卡兹丹-卢兹蒂格多项式

Minyoung Jeon
{"title":"康维希尔舒伯特变项和卡兹丹-卢兹蒂格多项式","authors":"Minyoung Jeon","doi":"10.1016/j.indag.2024.08.004","DOIUrl":null,"url":null,"abstract":"We establish combinatorial and inductive formulas for Kazhdan–Lusztig polynomials associated to covexillary elements in classical types, extending results of Boe, Lascoux–Schützenberger, Sankaran–Vanchinathan, and Zelevinsky for Grassmannians of classical types. The proof uses intersection cohomology theory and the isomorphism of Kazhdan–Lusztig varieties from Anderson–Ikeda–Jeon–Kawago.","PeriodicalId":501252,"journal":{"name":"Indagationes Mathematicae","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Covexillary Schubert varieties and Kazhdan–Lusztig polynomials\",\"authors\":\"Minyoung Jeon\",\"doi\":\"10.1016/j.indag.2024.08.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We establish combinatorial and inductive formulas for Kazhdan–Lusztig polynomials associated to covexillary elements in classical types, extending results of Boe, Lascoux–Schützenberger, Sankaran–Vanchinathan, and Zelevinsky for Grassmannians of classical types. The proof uses intersection cohomology theory and the isomorphism of Kazhdan–Lusztig varieties from Anderson–Ikeda–Jeon–Kawago.\",\"PeriodicalId\":501252,\"journal\":{\"name\":\"Indagationes Mathematicae\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indagationes Mathematicae\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.indag.2024.08.004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.indag.2024.08.004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们建立了与经典类型中的觊觎元素相关的卡兹丹-卢兹提格多项式的组合和归纳公式,扩展了博伊、拉斯科-舒岑贝格、桑卡兰-万钦那坦和泽列文斯基对经典类型格拉斯曼的研究成果。证明使用了交点同调理论和安德森-池田-郑-川子的卡兹丹-卢兹提格变体同构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Covexillary Schubert varieties and Kazhdan–Lusztig polynomials
We establish combinatorial and inductive formulas for Kazhdan–Lusztig polynomials associated to covexillary elements in classical types, extending results of Boe, Lascoux–Schützenberger, Sankaran–Vanchinathan, and Zelevinsky for Grassmannians of classical types. The proof uses intersection cohomology theory and the isomorphism of Kazhdan–Lusztig varieties from Anderson–Ikeda–Jeon–Kawago.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信