{"title":"康维希尔舒伯特变项和卡兹丹-卢兹蒂格多项式","authors":"Minyoung Jeon","doi":"10.1016/j.indag.2024.08.004","DOIUrl":null,"url":null,"abstract":"We establish combinatorial and inductive formulas for Kazhdan–Lusztig polynomials associated to covexillary elements in classical types, extending results of Boe, Lascoux–Schützenberger, Sankaran–Vanchinathan, and Zelevinsky for Grassmannians of classical types. The proof uses intersection cohomology theory and the isomorphism of Kazhdan–Lusztig varieties from Anderson–Ikeda–Jeon–Kawago.","PeriodicalId":501252,"journal":{"name":"Indagationes Mathematicae","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Covexillary Schubert varieties and Kazhdan–Lusztig polynomials\",\"authors\":\"Minyoung Jeon\",\"doi\":\"10.1016/j.indag.2024.08.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We establish combinatorial and inductive formulas for Kazhdan–Lusztig polynomials associated to covexillary elements in classical types, extending results of Boe, Lascoux–Schützenberger, Sankaran–Vanchinathan, and Zelevinsky for Grassmannians of classical types. The proof uses intersection cohomology theory and the isomorphism of Kazhdan–Lusztig varieties from Anderson–Ikeda–Jeon–Kawago.\",\"PeriodicalId\":501252,\"journal\":{\"name\":\"Indagationes Mathematicae\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indagationes Mathematicae\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.indag.2024.08.004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.indag.2024.08.004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Covexillary Schubert varieties and Kazhdan–Lusztig polynomials
We establish combinatorial and inductive formulas for Kazhdan–Lusztig polynomials associated to covexillary elements in classical types, extending results of Boe, Lascoux–Schützenberger, Sankaran–Vanchinathan, and Zelevinsky for Grassmannians of classical types. The proof uses intersection cohomology theory and the isomorphism of Kazhdan–Lusztig varieties from Anderson–Ikeda–Jeon–Kawago.